

Reference: 022138

April 24, 2023

Danco Group c/o McKenzie Dibble 5251 Erickson Way Arcata, CA 95521

Subject: Updated Geotechnical Recommendations, Proposed Three-Story Building on Taylor Way, Blue Lake, California

Dear McKenzie Dibble:

Introduction

This letter report presents our updated geotechnical recommendations for seismic design parameters to be used in the design of the subject project. When the 2022 California Building Code (CBC) took effect this year, there was confusion as to the correct American Society of Civil Engineers (ASCE) 7 Standard to use, and we began using ASCE 7-22 to determine seismic design parameters. We now understand that the 2022 CBC did not adopt ASCE 7-22, and it continues to use ASCE 7-16. Our March 22, 2023, report provided parameters from ASCE 7-22 instead of ASCE 7-16. Below are the updated seismic design parameters from the ASCE 7-16 Standard.

Seismic Design Parameters

Based on the subsurface conditions encountered at our exploration locations, laboratory test results, and our interpretation of soil conditions within 100 feet of the ground surface, we classify the site as a Site Class D consisting of a "Stiff Soil Profile" in accordance with Chapter 20 of ASCE 7-16. On this basis, the mapped and design spectral response accelerations were determined using the ASCE 7 Hazard Tool (accessed April 24, 2023) in conjunction with the site class and site coordinates at the location of the proposed building. Calculated values for ASCE 7-16 are presented in the table below.

Table 1.	ASCE 7-16 Spectral Acceleration Parameters (40.879528º, -123.996769º)

Parameter	0.2 Second	1 Second
Maximum Considered Earthquake Spectral	C - 2 917	C = 1 0E9
Acceleration (MCE _R)	S _s = 2.817	S ₁ = 1.058
Site Class	D	
Site Amplification factor	F _a = 1.0	$F_v = N/A$
Site-modified spectral acceleration	S _{MS} = 2.817	S _{M1} = N/A
Numeric seismic design value	S _{DS} = 1.878	$S_{D1} = N/A$
MCE _G peak ground acceleration (PGA)	1.167	
Site amplification factor at PGA (F _{PGA})	1.1	
Site modified peak ground acceleration (PGA _M)	1.284	

McKenzie Dibble Updated Geotechnical Recommendations, Proposed Three-Story Building on Taylor Way, Blue Lake, California April 24, 2023

Page 2

Closure

We trust this provides the updated recommendations you require. We apologize for any inconvenience. If you have any comments or concerns, please call me at (707) 441-8855.

John H. Dailey, PE, GE Senior Geotechnical Engineer

JHD:ame

Geotechnical Investigation and Geologic Hazards Evaluation for Proposed Three-Story Building

APNs 312-161-018 and 312-161-015 Taylor Way, Blue Lake, California

Prepared for:

Danco Group

March 2023 022138

Phone: (707) 441-8855 Email: info@shn-engr.com Web: shn-engr.com • 812 W. Wabash Ave, Eureka, CA 95501

Reference: 022138

March 22, 2023

Danco Group C/O McKenzie Dibble 5251 Ericson Way Arcata, CA 95521

Subject: Geotechnical Investigation and Geologic Hazards Evaluation for Proposed Three-Story Building on Taylor Way, Blue Lake, California

To McKenzie Dibble:

This report presents the results of a geotechnical investigation and geologic hazards evaluation conducted by SHN for the proposed mixed residential and commercial building to be constructed on Assessor's Parcel Numbers (APNs) 312-161-015 and 312-161-018, located on Taylor Way in Blue Lake, California. The primary purpose of this investigation was to assess site subsurface conditions and to develop geotechnical recommendations in support of the design and construction of the proposed new building.

We appreciate this opportunity to work with you on this project. If additional information or clarification is required, please contact us at 707-441-8855.

Sincerely, insert

SHN

Jason Buck, CEG Senior Engineering Geologist

JPD:JHD:dkl

Enclosure: Report

John H. Dailey, PE, GE Senior Geotechnical Engineer

Geotechnical Investigation and Geologic Hazards Evaluation for Proposed Three-Story Building, Taylor Way, Blue Lake, California

Prepared for: **Danco Group**

NIO. 256 Exp. 3/31/24 * COTECHNICALIFORNIA SAITE OF CALIFORNIA 3/22/23

Expiration July 31, 2024

Prepared by:

812 W. Wabash Avenue Eureka, CA 95502 (707) 441-8855

March 2023

QA/QC: GDS<u>GPS</u> Reference: 022138

Table of Contents

		Page
List of	of Illustrations	ii
Abbre	eviations and Acronyms	iii
1.0	Introduction1.1General1.2Site History and Previous Work1.3Project Description	1 1
2.0	Scope of Work	2
3.0	Field Investigation and Laboratory Testing3.1Field Exploration Program3.2Laboratory Testing	2
4.0	 Site Conditions	
5.0	 Geologic Hazards 5.1 Seismic Ground Shaking 5.2 Surface Fault Rupture 5.3 Soil Liquefaction Potential 5.4 Seismic Design Parameters 	5 5 5
6.0	Geotechnical Discussion and Conclusions	6
7.0	Recommendations 7.1 Site Preparation and Grading 7.1.1 General Recommendations 7.1.2 Reinforced Soil Mat Construction	
	 7.2 Select Engineered Fills 7.3 Wet Weather Subgrade Protection 7.4 Surface and Subsurface Drainage Control 7.5 Utility Trench Backfill 	9
	 7.5 Ounty Hench Backing 7.6 Mat Slab Foundation 7.6.1 Subgrade Modulus for Mat Design 7.6.2 Lateral Resistance 	
	7.7 Sidewalks and Other Flatwork Areas7.8 Asphalt Pavement Areas	
8.0	Additional Services8.1Plan and Specification Review8.2Construction Phase Monitoring	14
9.0	Closure	14
10.0	References	15

\\eureka\Projects\2022\022138-TaylorWyDanco\PUBS\rpts\20230322-TaylorWay-GeotechRpt.docx

Appendices

- Boring Logs 1.
- Laboratory Test Results 2.
- Liquefaction Analysis Results 3.

List of Illustrations

Follows Page

Figures		Follows Page
1.	Project Location	1
2.	Site Plan Study with Boring Locations and Previous Test Pits	1
3.	Historic Aerial Photograph with Former Log Pond (1956)	1
4.	Geologic Map (Carver, Stephens, and Young, 1985)	
Tables		Page
1.	ASCE 7-22 Spectral Acceleration Parameters (40.879528º, -123.996769º).	6
n	Fill Credition Criteria	0

2.	Fill Gradation Criteria	9
3.	Recommended Setbacks for LID Features	11
4.	Minimum Pavement Sections, Standard Flexible Asphalt Concrete Pavement	13

Abbreviations and Acronyms

Units of Measure

Term	Definition
bpf	blows per foot
g	acceleration of gravity
mm	millimeters
ohms-cm	ohms-centimeter
pcf	pounds per cubic foot
pci	pounds per cubic inch
ppm	parts per million
psf	pounds per square foot
psi	pounds per square inch
μm	micrometers

Additional Terms

Term	Definition
ACI	American Concrete Institute
ASCE	American Society of Civil Engineers
ASTM	ASTM-International
B-#	boring number
Caltrans	California Department of Transportation
CBC	California Building Code
CGS	California Geological Survey
DSA	California Division of the State Architect
F _{PGA}	Site amplification factor at PGA
H:V	horizontal to vertical
ID	internal diameter
MCE _R	Maximum Considered Earthquake Spectral Acceleration
MCS	Modified California Sampler
NR	no reference
OD	outside diameter
OSHA	Occupational Safety and Health Administration
PGA	MCE _G peak ground acceleration
PGA _M	site modified peak ground acceleration
SDC	Seismic Design Category
SPT	standard penetration test
USGS	United States Geological Survey

1.0 Introduction

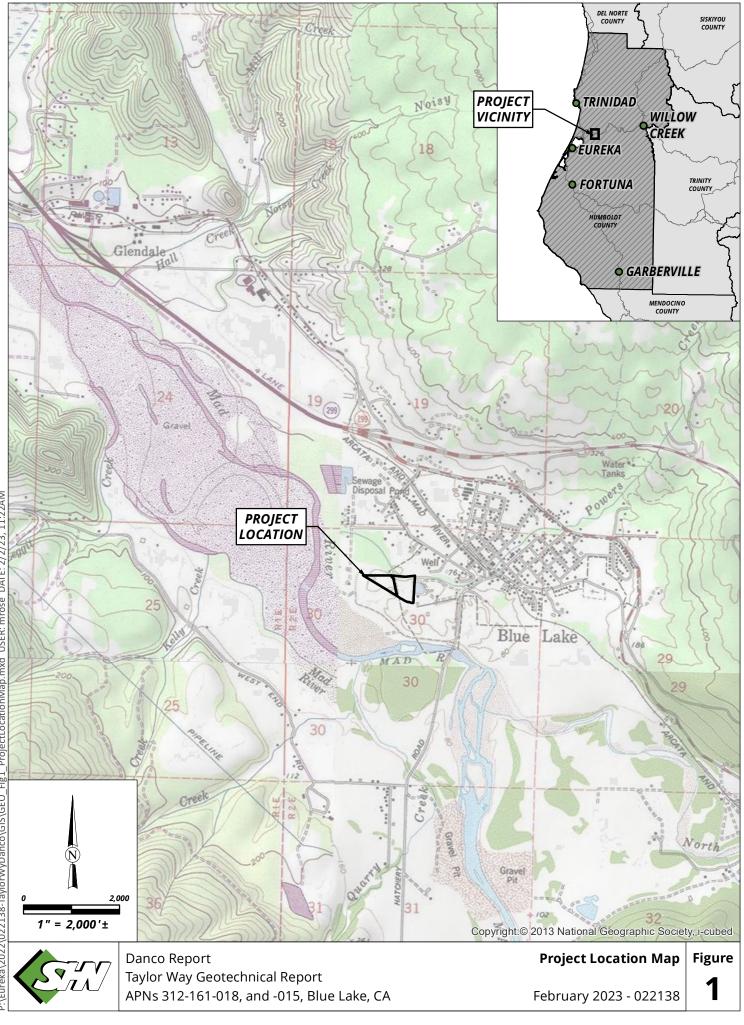
1.1 General

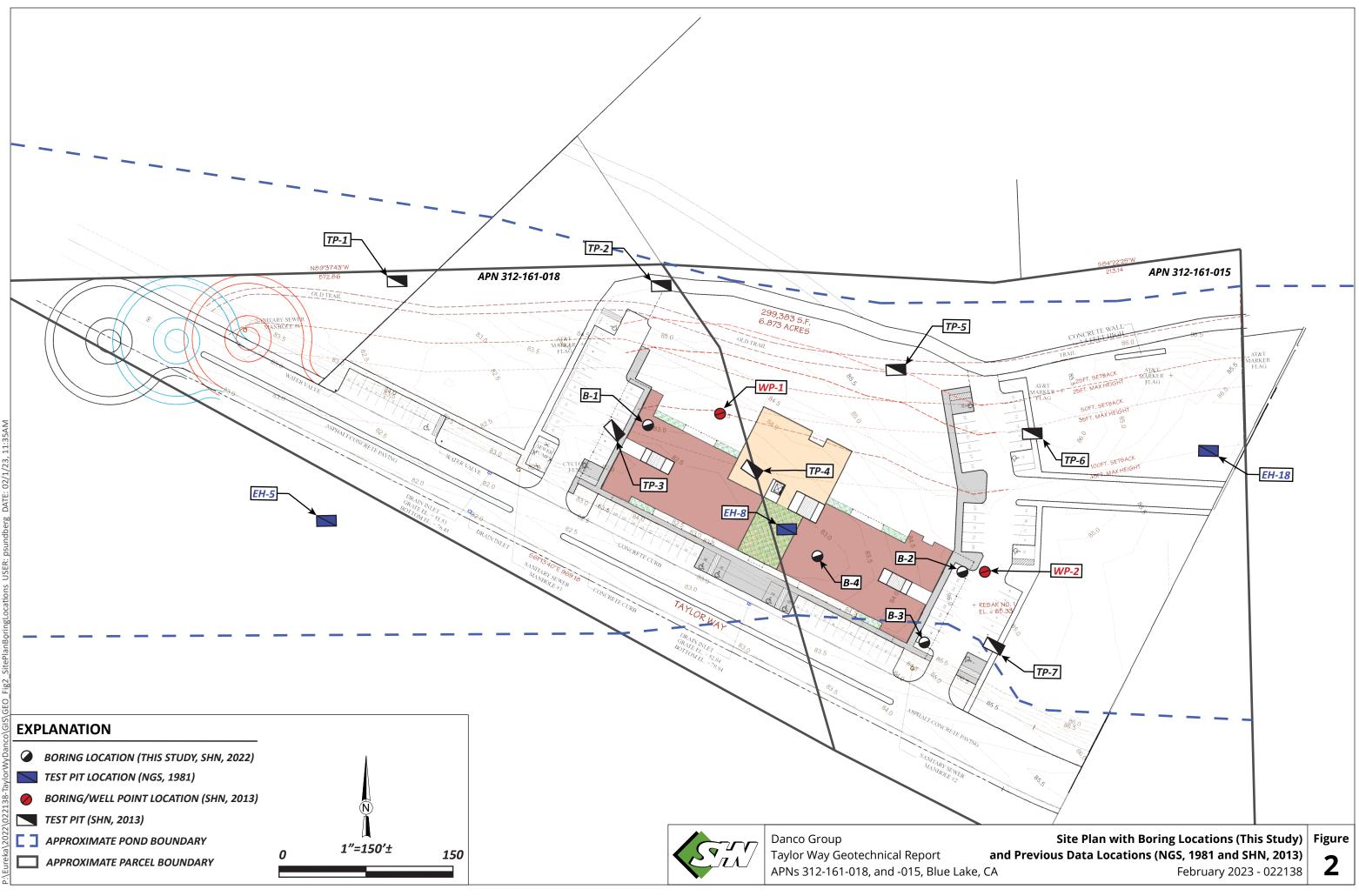
This geotechnical report presents the results of SHN's field and laboratory investigation for the proposed three-story mixed residential and commercial building to be constructed on APNs 312-161-018 and 312-161-015 on Taylor Way in Blue Lake, California (Figure 1 and Figure 2). This report was prepared for the sole use of Danco Group and its design consultants. The report is intended to comply with criteria presented in Section 1803, "Chapter 18A: Geotechnical Investigations," of the 2022 California Building Code (CBC), the requirements of Humboldt County and the City of Blue Lake (as appropriate).

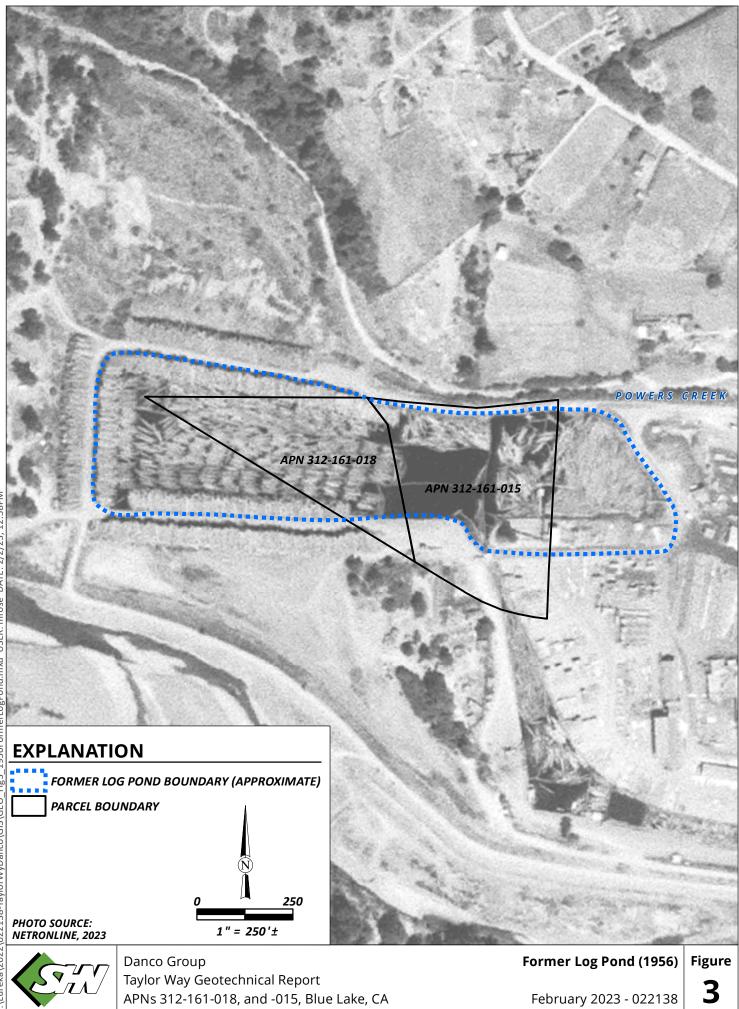
The conclusions and recommendations presented in this report are provided to assist the project design consultants in addressing the design and construction of the proposed building. This report is based on the data obtained from our field investigation, the results of laboratory testing performed on samples obtained from the geotechnical borings, and a review of previous reporting, published geologic literature and mapping in the vicinity of the project site.

1.2 Site History and Previous Work

Reporting in the project vicinity (NGS, 1981; SHN, 2008), as well as historic aerial photography from 1956 (Figure 3) indicate that previously, the portion of the subject parcels north of Taylor Way (in its present location) were mostly occupied by a log pond associated with a lumber mill. The lumber mill (which included the pond) was constructed between 1941 and 1954 and a major portion of the pond was backfilled prior to 1974 (NGS, 1981). The area of the proposed building footprint is within the boundaries of the former log pond, and as such, the existing ground surface is considered non-native.


As part of our work, we reviewed the results of previous geologic/geotechnical studies in the project vicinity. Northern Geotechnical Services (NGS, 1981) conducted a preliminary soils investigation to support the development of the Blue Lake Industrial Park, within which the current project is located. In 2013, SHN conducted a site investigation (borings and test pits) to assess subsurface conditions that may have been impacted by historic site activities (SHN, 2013). SHN also conducted a geotechnical investigation for a commercial development off Mondo Way, east of the project site (SHN, 2008, 2013). The locations of exploratory test pits and borings on the subject parcels investigated during the NGS (1981) and SHN (2013) studies are shown on Figure 2.


1.3 **Project Description**


Our understanding of the project is based on communications with Danco Group and their design architect, and on our review of the architect's "Site Plan Study" (December 3, 2022), which contains a site map depicting the proposed building location and dimensions (shown on Figure 2). We understand that the project will include the construction of a three-story mixed residential and commercial building. The proposed building will be located on the north side of Taylor Way, south of Powers Creek. Based on discussions with the project team, we understand the owner intends to utilize a reinforced shallow foundation system for support of the building.

The project site is generally flat and minimal grading will be necessary to develop the parking areas, sidewalks and access roadways.

2.0 Scope of Work

The scope of our services included the following:

- Review nearby geotechnical and geologic reports of the property and published geologic and geologic hazard maps.
- Perform site reconnaissance to observe existing site conditions and mark the exploration areas for USA (Underground Service Alert).
- Drill four (4) borings near the proposed building. Three (3) borings were advanced to approximately 25 to 35 feet below the ground surface. One (1) boring was advanced to a depth of 50 feet below the ground surface to address the liquefaction potential beneath the site. Samples from each boring were collected using standard penetration test (SPT) and modified California split spoon samplers.
- Samples collected were returned to SHN's soils testing laboratory for geotechnical analysis. Tests included dry density and moisture content, percent passing the #200 sieve, Atterberg Limits, and R-Value.
- Assessment of potential earthquake-related geologic/geotechnical hazards (for example, strong earthquake ground shaking, surface fault rupture, liquefaction, and differential settlement), and other potential geologic/geotechnical hazards.
- Perform engineering analyses in order to provide conclusions and recommendations regarding a.) earthwork, including site and subgrade preparation, fill material specifications, and fill compaction requirements, b.) discussion of appropriate foundation options, including allowable bearing capacities, estimates of settlement (total and differential), minimum footing depth, and allowable lateral capacities, c.) support of concrete slabs-on-grade, and d.) recommendations for observation of site preparation and grading, observation of foundation installation, and other geotechnical construction considerations.
- Preparation of this report summarizing our findings and recommendations, complete with field and laboratory data.

3.0 Field Investigation and Laboratory Testing

The geotechnical field exploration and laboratory testing programs carried out for this study are summarized below. Results of the field and laboratory testing programs are presented in Appendices 1 and 2, respectively.

3.1 Field Exploration Program

Four mud-rotary and solid flight auger exploratory borings were drilled on December 13-14, 2022, by Taber Drilling of Sacramento, using a track-mounted CME-300 drill rig equipped with solid flight augers and an automatic hammer for standard penetration testing (SPT). The borings were advanced to total depths of approximately 35 feet (B-1 and B-2), 25 feet (B-3), and 50 feet (B-4) below the existing ground surface (BGS). The locations of the exploratory borings are shown on Figure 2.

Visual classifications of the earth materials encountered in the borings were made in general accordance with the Manual-Visual Classification Method (ASTM-International [ASTM] D 2488). Final

geotechnical boring logs were prepared based on conditions encountered in the field, examination of samples in the laboratory, and the results of laboratory testing. Boring logs are included as Appendix 1.

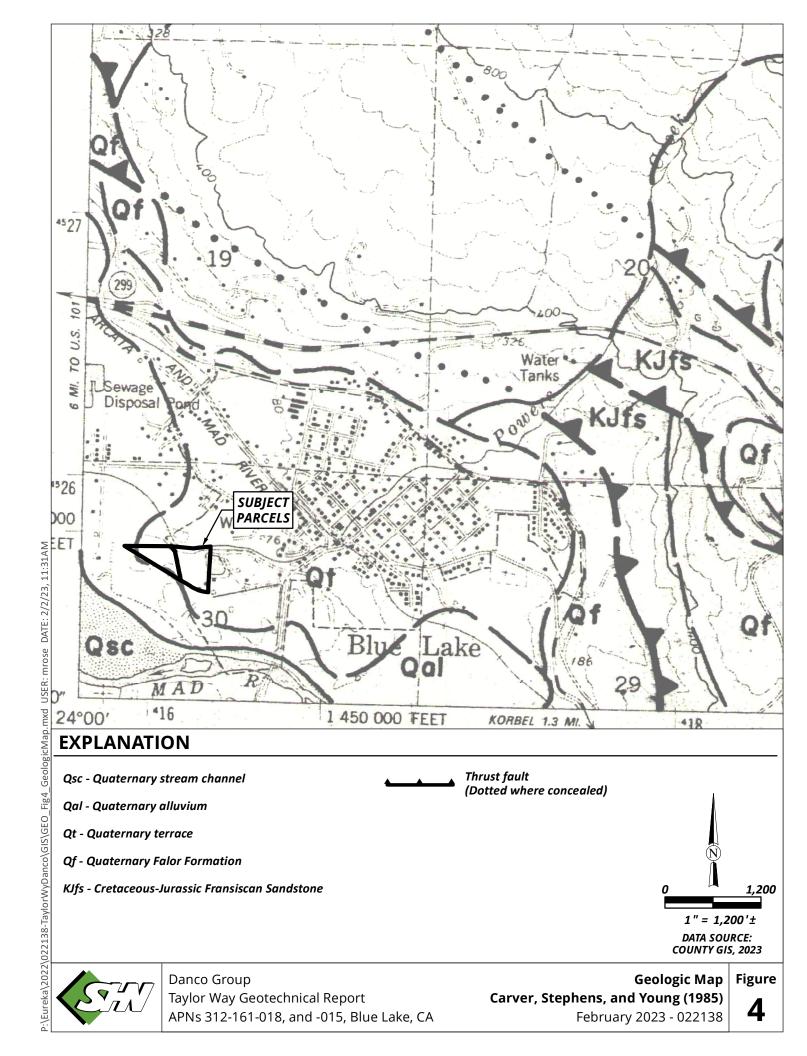
Relatively undisturbed soil samples were obtained by driving a 2.5-inch internal diameter (ID), 3.0-inch outside diameter (OD), Modified California Sampler (MCS) containing steel liners and a 1.5-inch ID, 2.0-inch OD SPT sampler without liners in accordance with ASTM D1586 standards. The samplers were advanced using a 140-pound auto-hammer falling 30 inches per blow. The number of hammer blows required to drive the samplers the last 12 inches of an 18-inch drive is provided on the boring logs reflecting the penetration resistance of the material (shown as blows per foot [bpf]). The penetration resistance values (bpf) recorded for SPT sampler drives and provided on the boring logs are actual penetration resistance (N-values) that are uncorrected for depth and the energy transfer ratio of the automatic hammers used. The penetration resistance values provided on boring logs for the MCS sampler drives are field blow counts and should not be construed as SPT N-values. Approximate equivalent SPT N-values for the MCS sampler should be multiplied by a factor of 0.64.

3.2 Laboratory Testing

Selected soil samples were submitted to SHN's soils testing laboratory in Eureka to determine index properties and strength characteristics of the subsurface materials. Samples were tested for in-place moisture content, dry density, percent fines, liquid limit, plasticity index, and R-value. Results of the tests are provided at the corresponding sample locations on the boring logs (Appendix 1) and included as Appendix 2.

4.0 Site Conditions

The following sections describe the project site and surface conditions, the geologic setting of the site, and subsurface soil and groundwater conditions encountered at the time of our field investigation.


4.1 Site Surface Description

The site is in the western Blue Lake area, approximately 1000 feet north of the active channel of the Mad River, on a relatively level portion of the river flood plain. The proposed building footprint is situated on a generally flat, grass covered surface adjacent to a public walking path along Powers Creek (to the north) and Taylor Way (to the south). Elevations in the proposed building area range between 80 to 85 feet (Figure 2).

4.2 Geologic Setting

Basement rock within the region is composed of late Jurassic to late Cretaceous age mélange of the Franciscan Complex (McLaughlin et al., 2000). In the Blue Lake region, Franciscan rock is overlain by early to middle Pleistocene age marine and continental deposits of the Falor formation (Carver, Stephens, and Young, 1985). In the project vicinity, Franciscan basement rock and Falor Formation deposits are overlain by a veneer of late Quaternary river terrace deposits associated with ancestral alignments of the Mad River. These terraces typically consist of an abrasion platform cut across bedrock, with river terrace sediments consisting of alluvial deposits (interbedded sand, gravel, and silt). Review of published geologic mapping by Carver, Stephens, and Young (1985; Figure 4) indicates that the site is underlain by these river terrace deposits.

4.3 Subsurface Soil Conditions

Our understanding of the subsurface soil conditions is based on review of previous work in the area (NGS, 1981; SHN, 2008; SHN, 2013) and the results of our subsurface investigation conducted in December 2022. Figure 2 shows the locations of the relevant subsurface explorations from previous studies and those from the current study. The logs associated with the subsurface explorations shown on Figure 2 are included as Appendix 1.

As discussed above, the proposed project overlies the site of an old log pond active in the 1950s/60s that has subsequently been backfilled. We used an aerial image from 1956 to estimate the boundary of the pond which is shown on Figure 2 relative to the proposed project. The proposed building location appears to be almost entirely located over the top of the backfilled pond with a small portion in the southeast corner that extends outside. The pond has been backfilled for some time now, but we are not aware of any records of the backfill activities; preparation of subgrade, methods for placement, and compaction effort.

During our subsurface exploration we encountered up to 12 feet of undocumented fill, which we associate with the backfilling of the former log pond. At the location of B-4, the fill was 6 feet thick. Fill may not be present at all in the southeast corner of the proposed building (outside log pond location). The fill materials encountered in our borings primarily consisted of gravels and sands. A 2-foot layer of fine sand and silt with mixed organics was encountered at the base of the fill in B-2 and B-3, interpreted to be sediment that had settled at the bottom of the pond. Soil densities in the fill were generally moderate to high except for the mid to lower portion of the fill where penetration resistance values (blows per foot) were below 10 (loose/soft). This low-density interval was observed in B-1, B-2 and B-3. B-4 had 6 feet of fill, with no observed loose/soft intervals noted. It should be noted that the presence of gravels can influence the field blows per foot recorded during the standard penetration test such that they can be erroneously high. Soil densities may be lower than the recorded values would indicate. Only minor organic materials were noted in the borings for this study, however previous explorations encountered wood/logs (TP-4) and layers of bark and/or mixtures of gravel and burned cinders (EH-5 and EH-18).

Beneath the fill, we encountered medium dense to dense, well-graded, interbedded sands and gravels we interpret to be native alluvial deposits of the ancestral Mad River. In the deepest boring (B-4), the alluvial deposits are underlain by Falor formation bedrock at an approximate depth of 40 feet BGS.

Groundwater was encountered during our site investigation (December 13-14, 2022) at approximately 7 feet (B-1, B-2, and B-3), and at 6 feet (B-4) BGS. Groundwater levels at the time of our investigation (mid-December) would be expected to be at or near the seasonal high. Groundwater levels can be expected to be higher during periods of intense precipitation.

5.0 Geologic Hazards

Potential geologic/geotechnical hazards common to the local area include seismic ground shaking, surface fault rupture, and adverse soil conditions. The assessment of these potential hazards is presented in this section.

5.1 Seismic Ground Shaking

The entire North Coast region is a seismically active area where strong seismic shaking presents a significant hazard. That hazard is present at the proposed building site, but it is no greater than that present elsewhere in the region. The site is approximately 1.1 miles west of the McKinleyville fault, which is considered active by the State of California. Additionally, the Cascadia subduction zone is located approximately 45 miles to the west, offshore. Based on the proximity to these active faults, the site can be expected to experience strong seismic ground shaking during the design life of the project.

5.2 Surface Fault Rupture

The site is not located within an Alquist-Priolo Earthquake Fault Hazard Zone (Bryant and Hart, 2007). The McKinleyville fault, which is the closest recognized active fault, is approximately 1.1 miles east of the project site. The project site is located on a planar terrace surface that exhibits no geomorphic evidence that would suggest previous surface rupture. It is our opinion that the potential for surface fault rupture at the site is negligible.

5.3 Soil Liquefaction Potential

Liquefaction is the sudden loss of soil shear strength due to a rapid increase of soil pore water pressures that occurs in response to strong seismic ground shaking. The adverse effects of liquefaction include the amplification of seismic shaking, localized ground settlement and ground cracking, the expulsion of water and sand, the partial or complete loss of bearing and confining forces used to support building loads and mitigate lateral spreading.

Based on the published results of geotechnical testing and post-earthquake studies, a soil's susceptibility to liquefaction can be directly correlated to the type, origin, and age of the deposit. Materials that are most susceptible to liquefaction are geologically young, unconsolidated loose sands and soft silt-rich deposits located in river valleys, bay margins, and along ocean shorelines. Post-liquefaction studies indicate that the likelihood of liquefaction occurring decreases with increasing geologic age (Youd and Perkins, 1978).

Qualitatively, some intervals in the fill materials meet the criteria for deposits susceptible to liquefaction; that is, young (historically placed), loosely consolidated sandy soils that are saturated. These conditions are observed towards the mid to lower portion of the fill materials, generally at depths between 7 to 10 feet below grade. The liquefaction potential in these saturated fill materials is considered moderate to high during a relatively rare, very strong or prolonged earthquake. The upper fill is suitably dense and generally not saturated. The native soils underlying the fill materials appear to be suitably dense and well graded (include coarse gravels) such that the liquefaction potential is considered low.

Quantitative liquefaction modeling was completed for this project to evaluate susceptible layers and the magnitude of seismic settlement predicted. The results of the analysis are included as Appendix 3 and indicate that each boring location has some intervals falling into a category of liquefaction potential. The soil profiles in B-1 and B-2 show the highest liquefaction potential with seismic settlement potential on the order of 1.75 to 3.5 inches, respectively. The soil profiles in B-3 and B-4 have lower liquefaction potential with seismic settlement potential (within the fill) on the order of 0.3 to 0.5 inches, respectively. It should be noted that the blows per foot may be artificially high due to the presence of gravels in the soil profile (discussed in Section 4.3, above). Therefore, the seismic settlement potential may be higher

than that calculated. The liquefaction analysis was performed with a modeled seismic event with an earthquake magnitude (M_W) of 9.1 and a peak ground acceleration of 1.49g.

Liquefaction, which in our opinion is likely to be associated only with a relatively rare, very strong or prolonged earthquake, presents the following estimated risks:

- a low to moderate risk of sand boils at the ground surface;
- a moderate to high risk of a few inches of co-seismic subsidence, including a high potential for differential seismic settlement; and
- a low to moderate risk of differential ground movement beneath the building site from lateral spreading.

We provide recommendations to reduce these risks in Section 7 below.

5.4 Seismic Design Parameters

Based on the subsurface conditions encountered in the borings advanced on the site, laboratory test results, and our interpretation of soil conditions within 100 feet of the ground surface, we classify the site as a Site Class D, consisting of a "stiff soil profile" in accordance with Chapter 20 of ASCE 7-22. On this basis, the mapped and design spectral response accelerations were determined using the ASCE 7 Hazard Tool (accessed 01/31/23) in conjunction with the site class and site coordinates at the location of the proposed building. Calculated values for ASCE 7-22 are presented in the table below.

Parameter	0.2 Second	1 Second	
Maximum Considered Earthquake	6 - 2 20	S ₁ = 1.15	
Spectral Acceleration (MCE _R)	S _S = 3.39	51 - 1.15	
Site Class	D = Stiff Soil		
Site-modified spectral acceleration	S _{MS} = 3.52	S _{M1} = 2.45	
Numeric seismic design value	S _{DS} = 2.34	S _{D1} = 1.64	
Seismic Design Category (SDC)	E		
Site modified peak ground acceleration (PGA _M)		1.36	
Long-period transition period (T_L)	8		
Time averaged shear wave velocity to 30 meters depth (V _{S30})		260	

 Table 1.
 ASCE 7-22 Spectral Acceleration Parameters (40.879528º, -123.996769º)

6.0 Geotechnical Discussion and Conclusions

Based on the results of our investigation, SHN concludes the site can be developed as planned for the proposed building construction, provided the recommendations presented in this report are followed and that associated geologic and geotechnical risks are acknowledged. The primary geotechnical consideration affecting the design and construction of the project is the presence of up to 12 feet of undocumented fill of variable density underlying most of the proposed project. The variability of fill materials, intervals of low-density sands, soft silts and organics within the fill, and the variation of fill thicknesses all contribute to a risk of total and differential settlement of structural elements over time, including seismically-induced settlement associated with earthquakes.

The site is located in an area susceptible to a multitude of seismically induced hazards, including strong seismic ground shaking, liquefaction susceptibility, and total and differential settlement (both under static and seismic conditions). The above-noted hazards pose a significant risk to the structural integrity of the new building over the course of its design life, particularly because it is located on a backfilled pond site. Static settlement under structural loads and seismically-induced differential settlements associated with a rare, very large or prolonged earthquake is estimated at up to 2 to 3 inches, or more, if a typical shallow foundation system were to be used. Alternatives discussed with the project team for reducing this risk and providing uniform foundation support under the proposed structure include:

- 1. Removal and replacement of the fill materials with engineered fill; this option eliminates the problem soils and ensures that no layers or pockets of unsuitable soils remain. Susceptibility to settlement would be mitigated for all project elements supported on the engineered fill.
- 2. Support the structure on a deep foundation system that penetrates through the fill; this option mitigates the hazard of static and seismic settlement for project elements supported by the deep foundation. Sidewalks, parking areas and other project elements that are not supported by the deep foundation remain susceptible to settlement.
- 3. Preloading the building footprint and/or project site; this option mitigates the potential for static settlement, but does not mitigate seismic settlement associated with liquefaction
- 4. Support the structure on a mat slab foundation underlain by a reinforced soil mat; this system does not mitigate the potential for total settlement (seismic or static), but it reduces the potential for concentrated differential settlement.

It is our understanding that the owner has chosen to utilize a reinforced shallow foundation system, and we therefore provide specific recommendations for the use of this type of system. If other alternatives are considered, we should be consulted to provide appropriate recommendations.

A shallow mat foundation system can be used if it is suitably sized and reinforced and supported on a minimum 4-foot-thick layer of geogrid-reinforced engineered fill mat below the entire structure. The placement of a geogrid-reinforced engineered fill mat below the proposed structure is intended to minimize (but not eliminate) the estimated differential settlements caused by any settlement of the remaining undocumented fills, and any underlying liquefaction-susceptible soils that undergo volumetric strain due to post-liquefaction reconsolidation. In addition, the high tensile strength of the geogrid reinforcement is expected to reduce the potentially damaging effects associated with liquefaction-induced ground surface deformation, if they were to occur.

All geotechnical-related work should be performed in accordance with the recommendations of the Geotechnical Engineer-of-Record during construction. Where the recommendations of this report and the cited sections of Title 24 are in conflict, the Owner and Architect should request clarification from the Geotechnical Engineer-of-Record. The recommendations in this report should not be waived without the consent of the Geotechnical Engineer-of-Record for the project. The following subsections present recommendations for the geotechnical-related work.

7.0 Recommendations

7.1 Site Preparation and Grading

7.1.1 General Recommendations

Site preparation includes removal of debris, organics, organic topsoil, loose soil, and any other unsuitable material. Site preparation operations should extend at least 5 feet beyond the limits of improvements. We anticipate that stripping to a depth of about 2 to 4 inches will be required to remove the organics and topsoil. Deeper stripping may be locally required to remove concentrations of vegetation, such as brush. The cleared vegetation and debris should be removed from the site, but the strippings can be stockpiled for reuse in landscape areas.

Any vegetation and organic topsoil with more than 2 percent organic material by dry weight should be removed. The Geotechnical Engineer or qualified representative should observe and approve the prepared site prior to any excavation, subgrade preparation, and placement of fill or improvements.

We expect that the site soils will be excavatable with conventional grading and trenching equipment. If grading commences in the winter or spring, or after a period of excessive rainfall, it is likely that the surficial soils may become saturated. Wet or saturated soil may cause difficulties in access with grading and trenching equipment and difficulties in loading, spreading, and compaction of fill material. Moisture conditioning and/or aerating of the site soils may be required. The time required for drying can be reduced by disking, ripping, or otherwise aerating the soil.

The contractor shall be responsible for the stability of all temporary excavations and should comply with applicable Occupational Safety and Health Administration (OSHA) regulations (California Construction Safety Orders, Title 8). The Contractor should periodically monitor all open cuts for evidence of incipient stability failures.

7.1.2 Reinforced Soil Mat Construction

The area to contain the proposed building and for a horizontal distance of at least 5 feet beyond, should be over-excavated to a minimum depth of 4 feet below proposed subgrade elevation. This will allow for the removal of a substantial portion of the undocumented fill soils of variable density. The overexcavated subgrade should be scarified to a depth of 6 inches, moisture conditioned or aerated and recompacted to 90 percent relative compaction¹. To prevent pumping of the subgrade, compaction should be conducted under static mode only (that is, no vibratory compaction). The Geotechnical Engineer or qualified representative should observe and approve the over-excavation, and prior to subgrade preparation and placement of engineered fill or improvements.

Following recompaction of the over-excavated subgrade, we recommend that a layer of geogrid (Tensar InterAx[™] NX750 or equivalent) be placed on the exposed subgrade prior to backfilling the overexcavated area with engineered fill. A second layer of geogrid should be placed at the midpoint of the 4 feet of replaced engineered fill. We, therefore, anticipate that approximately 4 feet of engineered fill, with 2 layers of geogrid, will be placed below the proposed building footprint.

¹ Relative compaction refers to the in-place dry density of a soil expressed as a percentage of the maximum dry density of the same soil, as determined by the ASTM D1557-12 Test Method. Optimum moisture content is the water content (percentage by dry weight) corresponding to the maximum dry density.

7.2 Select Engineered Fills

Fill placed in areas to support proposed foundations should meet the requirements for select engineered fill. Select engineered fill should have less than 2 percent by dry weight of vegetation and deleterious material and should meet the gradation requirements presented in Table 2.

Sieve Designation	Percent Passing by Dry Weight
3-inch (50 mm)ª	100
2½-inch (37.5 mm)	85 minimum
¾-inch (19 mm)	70 minimum
No. 4 (4.75 mm)	60 minimum
No. 200 (75 μm) ^ь	5 minimum, 30 maximum

Table 2. Fill Gradation Criteria

^a mm: millimeters

^b µm: micrometers

We anticipate that onsite soils will be suitable for reuse as select engineered fill following removal of debris, organics, and any other unsuitable material. Fine-grained soil with a liquid limit greater than 40 and a plasticity index greater than 15 should not be used as select engineered fill. If clayey soils do not meet the plasticity requirements, mixing of the clayey soils with sandier soils may be required. Crushing and/or removal of rock particles greater than 3 inches in size will be required. Select engineered fill should have a low corrosion potential, which is defined as a minimum resistivity of 2,000 ohms-centimeter (ohms-cm) and maximum sulfate and chloride concentrations of 250 parts per million (ppm). In addition, we do not recommend using river-run material as select engineered fill; crushed, angular material is preferred with at least 50 percent of the material (as determined by the material's dry weight) containing a minimum of two fractured faces.

Engineered fill should be placed in loose lifts not exceeding 8 inches in thickness and compacted to a minimum of 90 percent relative compaction. The Geotechnical Engineer or qualified representative should approve all fill prior to placement. A qualified field technician should be present to observe fill placement and perform field density tests in accordance with ASTM D 6938 at random locations throughout each lift to verify that the specified compaction is being achieved.

Samples of any proposed import fill materials should be submitted to SHN for approval at least 3 business days prior to use at the site.

7.3 Wet Weather Subgrade Protection

Contractors should expect high soil moisture conditions in the near-surface soils throughout the wet season and into the late spring months following a typical winter wet season, and in the common perennially wet areas at the site. The wet season in coastal northern California generally begins in the month of November and continues through May. Heavy rains are also not uncommon during the months of October and June. Beginning construction activities and earthwork immediately prior to the onset of the wet season is not advised and will likely lead to delays if measures are not taken to stabilize and protect the exposed subgrade.

Protection of the subgrade, if necessary, is the responsibility of the contractor. Track-mounted excavating equipment may be required during and following wet weather. The contractor will be responsible for constructing an all-weather access road and staging area, as necessary. The thickness of the haul road to access the site for construction and staging areas will depend on the amount and type of construction traffic. The materials used for haul roads or site access drives should be stabilization material consisting of pit or quarry run rock that is well-graded, angular, crushed rock consisting of 4- to 6-inch minus material with less than 5 percent passing the U.S. Standard No. 4 Sieve. The material should be free of organic matter and other deleterious material. A minimum 6- to 12-inch-thick mat of stabilization material should be used for light staging areas. The stabilization material for haul roads and areas with repeated heavy construction traffic will likely need to be increased to between 12- to 18inches. The actual thickness of haul roads and staging areas is the contractor's responsibility and should be based on the contractor's approach to site work and the amount and type of construction traffic. The stabilization material should be placed in one lift over the prepared, undisturbed subgrade and compacted using a smooth-drum, non-vibratory roller. Additionally, a geotextile fabric should be placed as a barrier between the subgrade and stabilization material. The geotextile should meet specifications for soil separation and stabilization, such as Mirafi 600X or equivalent.

7.4 Surface and Subsurface Drainage Control

Surface drainage should be planned to prevent ponding and enable water to drain away from foundations, slabs-on-grade, and edges of pavements, and towards suitable collection or discharge facilities. A positive surface drainage of at least 4 percent is recommended within 10 feet of all building foundations in unpaved areas. In paved areas, a positive surface drainage of at least 2 percent is recommended to allow for rapid removal of surface water. Roof drainage systems should be planned to direct rainwater away from building foundations.

Concentrated water should not be discharged onto bare ground but should be carried in pipes or lined channels to suitable disposal points. The use of water-intensive landscaping around the perimeter of structures should be avoided to reduce the amount of water introduced to the subgrade. Irrigation of landscaping around structures should be limited to drip or bubbler-type systems. Trees with large roots should also be avoided since they can dry out the soil beneath foundations and cause settlement. The purpose of these recommendations is to avoid large differential moisture changes adjacent to foundations, which have been known to cause large differential movement over short horizontal distances in expansive soils, resulting in cracking of slabs and architectural damage.

In addition, surface drainage should adhere to the setbacks for low-impact development (LID) features, if required, as shown in Table 3.

Type of LID Feature	Setback from Building Foundations	Setback from Pavement Sections and Exterior Slabs-on-Grade
Designed to infiltrate collected and concentrated stormwater (that is, dry wells, vegetated swales, bioretention facilities)	10 feet	3 feet ^b
Alternative engineered hardscaping (that is, porous asphalt, permeable pavers) subject only to incidental rainfall (<i>not</i> subject to re-routed, concentrated stormwater)	5 feet	3 feet

Table 3. Recommended Setbacks for LID^a Features

^a LID- low impact development

^b Setback is not required *only if* an effective barrier is installed (such as a concrete-filled cutoff trench that prevents moisture from traveling from the LID feature to below the pavement section/slab-on-grade).

7.5 Utility Trench Backfill

New utility trenches excavated parallel to spread footing foundations should be set back from the footings such that the trench bottoms lie outside a projected hypothetical 1.5H:1V (horizontal to vertical) line extending downward from the footing bottom.

Unless concrete bedding is required around utilities, bedding should consist of sand having a sand equivalent (SE) of at least 30. The bedding should extend from 6 inches below to 1 foot above the conduit or pipe. Sand bedding should not be jetted or ponded into place and should be mechanically compacted to a minimum of 90 percent relative compaction.

In areas to support improvements (such as adjacent-to-structure foundations), backfill placed above the bedding in utility trenches (including culvert and sprinkler lines) should be properly placed and adequately compacted to minimize settlement and provide a stable subgrade. If possible, the trench backfill should be compacted following rough grading, but prior to final grading and compaction. Onsite inorganic soils meeting the requirements for engineered fill may be used as trench backfill. Backfill consisting of onsite soils should be placed in layers not exceeding 8 inches in loose thickness, moisture-conditioned, and compacted to at least 90 percent relative compaction as described for engineered fill. Trench backfill need only be compacted to 85 percent relative compaction in landscape areas or in areas more than 5 feet beyond the limits of building foundations.

Where utility trenches cross underneath buildings, we recommend that a plug be placed within the trench backfill to minimize the normally granular backfill from acting as a conduit for water to enter beneath the building. The plug should be constructed using sand cement slurry (minimum 28-day compressive strength of 500 pounds per square inch [psi]) or relatively impermeable native soil for pipe bedding or backfill. We recommend that the plug extend a distance of at least 3 feet in each direction from the point where the utility enters the building perimeter.

7.6 Mat Slab Foundation

As discussed in Section 6.0 above, a reinforced shallow foundation system is the preferred alternative chosen for supporting the structure. We recommend that a suitably sized and reinforced mat slab foundation be constructed on a geogrid-reinforced soil mat at least 4 feet thick.

The foundation should be designed using a maximum allowable bearing capacity of 2,500 pounds per square foot (psf) for dead plus normal duration live loads. The allowable bearing capacity may be increased by one-third when considering short-term wind and seismic loads.

The mat foundation system should be constructed on a compacted geogrid-reinforced soil mat with two layers of triaxial geogrid reinforcement designed and constructed as described in Section 7.1.2, above. It is important that the foundation excavations are moist, clean, and free of drying cracks, debris, loose sand and gravel, and water at the time the foundation is cast. Foundation excavations should be checked and approved by the Geotechnical Engineer or qualified representative immediately prior to placing concrete.

For the geogrid-reinforced soil mat and foundation using the allowable bearing values given above, we estimate a maximum settlement under static loading conditions of less than 1 inch. Differential settlement is not expected to exceed half the estimated maximum.

7.6.1 Subgrade Modulus for Mat Design

For mat design, we recommend using the following equation to estimate the subgrade modulus:

$$K_{s} = k_{1} \left\{ \frac{(B+1)}{2B} \right\}^{2}$$

where:

k₁ = coefficient of subgrade reaction for 1-foot square plate = 300 pounds per cubic inch (pci) B = width beneath column or bearing wall, in feet, where stresses are imposed on ground

The value of B and the corresponding K_s value should be consistent with the calculated deflected shape of the foundation beneath columns and bearing walls.

7.6.2 Lateral Resistance

Base friction resistance may be calculated using a friction coefficient of 0.35 (ultimate value for concrete on engineered fill material). The ultimate friction coefficient may be as low as 0.15 if waterproofing is used, depending on the waterproofing. Passive resistance may be calculated using an equivalent fluid unit weight of 300 pounds per cubic foot (pcf). This value is reduced by a factor of 1.5 from the ultimate value to limit movement required to mobilize ultimate passive pressure. Both the ultimate base friction and allowable passive pressure may be combined in calculating total lateral resistance. The passive resistance contributed by fill material within 1 foot of the ground surface should be neglected unless these materials are protected and confined by a slab-on-grade or pavement.

The mat foundation should be cast neat against the engineered fill to develop the design passive resistance. Alternatively, any gap between the foundation and the adjacent ground should be completely backfilled using lean concrete.

7.7 Sidewalks and Other Flatwork Areas

In general, we recommend that exterior concrete flatwork be supported on a minimum of 4 inches of Class II crushed aggregate base compacted to a minimum of 90 percent relative compaction.

7.8 Asphalt Pavement Areas

Pavement construction should conform to the requirements of the Caltrans Standard Specifications, latest edition. Recommendations for both flexible pavements (asphalt concrete) and rigid pavements (Portland cement concrete) are provided below.

Recommended minimum pavement sections for standard flexible asphalt concrete are given below in Table 4 for various traffic loading conditions. The recommended pavement sections are based on a laboratory R-Value of 59 for the gravelly sand with clay that currently surfaces the site. Pavement sections for other traffic loading should be designed on a case-by-case basis.

Traffic Index	Asphalt Concrete Thickness (inches)	Class 2 Aggregate Base Thickness (inches)
5 and below	2.5	6
6	3	6
7	4	6

Aggregate used for asphalt concrete surfacing should conform to the grading specified in Caltrans Standard Specifications Section 39 for 9.5 millimeters (mm) or 12.5 mm (¾ inch or ½ inch, respectively) maximum, medium grading. Asphalt concrete surfacing should be placed in a single lift.

We recommend that rigid concrete pavements consist of at least 6 inches of Class 2 Aggregate Base beneath at least 6 inches of concrete. For durability and wear resistance, all Portland cement concrete pavements should have a minimum compressive strength of 4,000 pounds per square inch (psi). A modulus of subgrade reaction, k_v (30-inch circular plate) of 200 psi may be used for design of Portland cement concrete pavements.

Paved areas should be sloped and adequately drained to prevent surface water or subsurface seepage from saturating the pavement subgrade soil. All curbs surrounding landscape areas should be embedded at least 6 inches into the soil subgrade to minimize the migration of water beneath pavement sections.

Heavy construction traffic on new pavements or partial pavement sections (such as, the base course over the prepared subgrade) will likely exceed the design loads and could potentially damage or shorten the pavement life. Therefore, we recommend construction traffic not be allowed on new pavements, or that the contractor takes appropriate precautions to protect the subgrade and pavement during construction.

If construction traffic is to be allowed on newly constructed road sections, an allowance for this additional traffic will need to be made in the design pavement section.

8.0 Additional Services

We suggest communications be maintained during the design phase between the design team and SHN to optimize compatibility between the design, soil, and groundwater conditions. We also recommend that SHN be retained during the construction phase to verify the implementation of our recommendations related to earthwork.

8.1 Plan and Specification Review

We have assumed in preparing our recommendations that SHN will be retained to review those portions of the plans and specifications that pertain to earthwork and foundations. The purpose of this review is to confirm that our earthwork and foundation recommendations have been properly interpreted and implemented during design. If we are not provided with this opportunity for review of the plans and specifications, our recommendations could be misinterpreted. If SHN does not review the geotechnical elements of the plans and specifications, the reviewing Geotechnical Engineer should thoroughly review this report and should agree with its conclusions and recommendations or otherwise provide alternative recommendations. Furthermore, if another geotechnical consultant is retained for follow-up services to this report, SHN will at that time cease to be the Geotechnical Engineer-of-Record. SHN cannot assume responsibility or liability for the adequacy of our geotechnical recommendations unless SHN is retained to observe the soil-related portions of the construction.

8.2 Construction Phase Monitoring

We recommend that SHN be retained during the construction phase to verify the implementation of our recommendations related to earthwork and to perform the following tasks:

- 1. Monitor site clearing, including removal of loose fill material, and any other unsuitable material if it is determined that this is required.
- 2. Monitor over excavation and subgrade preparation.
- 3. Observe and test placement of the geogrid reinforced engineered fill mat and backfill.
- 4. Observe foundation excavations.
- 5. Observe construction of asphalt-paved parking areas

This construction phase monitoring is important as it provides the stakeholders and SHN the opportunity to verify anticipated site conditions and recommend appropriate changes in design or construction procedures if site conditions encountered during construction vary from those described in this report. It also allows SHN to recommend appropriate changes in design or construction procedures if construction methods adversely affect the competence of onsite soils to support the structural improvements.

9.0 Closure

The opinions presented in this report are valid as of the present date for the property evaluated. Changes in the condition of a property can occur with the passage of time, whether due to natural processes or the works of human, on this or adjacent properties. In addition, changes in applicable standards of practice can occur, whether from legislation or the broadening of knowledge.

Accordingly, the opinions presented in this report may be invalidated, wholly or partially, by changes outside of our control. Therefore, this report is subject to review and should not be relied upon after a period of 3 years. In addition, this report should not be used and is not applicable for any property other than that evaluated.

10.0 References

- American Society of Civil Engineers (ASCE). (2021). "ASCE 7-22: Minimum Design Loads and Associated Criteria for Buildings and Other Structures." Reston, VA:ASCE.
- ASTM-International (ASTM). (NR). Annual Books of ASTM Standards (Revision issued annually). Conshohocken, PA:ASTM.
- Bryant, W.A. and E.W. Hart. (2007). Fault-Rupture Hazard Zones in California, Alquist-Priolo Earthquake Fault Zoning Act (with Index to Earthquake Fault Zones Maps): California Division of Mines and Geology Special Publication 42. NR:California Department of Conservation, CGS.
- California Building Standards Commission. (2023). "2022 California Building Code." California Code of Regulations, Title 24, Part 2, Volume 2 of 2, based on the 2018 International Building Code. Sacramento, CA:California Building Standards Commission.
- California Department of Transportation (Caltrans). (2022). "Standard Specifications." Sacramento, CA:Caltrans.
- Carver, G.A., Stephens, T.A., and Young, J.C. (1985). "Quaternary Geologic Map of the Mad River Fault Zone, Arcata North, NE ¼ Eureka 15' quadrangle." Unpublished preliminary map for the California Division of Mines and Geology State Map Project, scale 1:24,000.
- McLaughlin, R.J., and 7 others. (2000). Geology of the Cape Mendocino, Eureka, Garberville, and Southwestern part of the hayfork 30 x 60 Minute Quadrangles and Adjacent Offshore Area, Northern California: U.S. Geological Survey Miscellaneous Field Studies MF-2336.
- Northern Geotechnical Services. (1981). Preliminary Soils Investigation, Proposed Industrial Park, City of Blue Lake. Unpublished consultant report.
- SHN. (2008). Memorandum #2; Proposed 4,000 Square Foot Building, Mondo Way, Blue Lake Industrial Park. Unpublished consultant report.
- ---. (December 2013). "Site Investigation Report of Findings, Blue Lake Business Park, Blue Lake, California, EPA Grant ID No. BF-96931601." Project#: 013066. Eureka, CA:SHN.
- U.S. Occupational Health and Safety Administration (OSHA). (NR). "OSHA Excavation and Trench Safety Standards 29 CFR Part 1926, Title 29—Labor, Subtitle B--Regulations Relating to Labor, Chapter XVII--Occupational Safety and Health Administration, Department of Labor, Part 1926--Safety and Health Regulations for Construction." Washington, D.C.:OSHA.

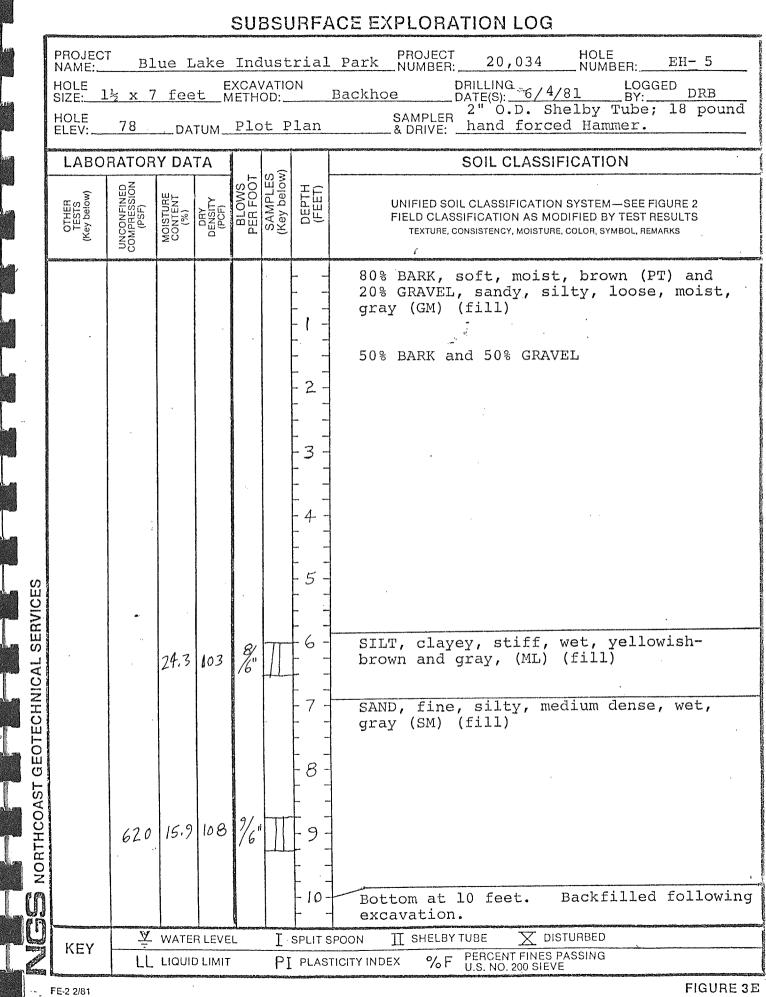
Boring Logs

	P.A.	7					BO	RIN	IG N	IUN		R B E 1 0	
CLIEN	IT Dar	100	PROJEC	T NAME	Taylo	or Way Geo	otechn	ical St	udy				
		JMBER 022138				Blue Lake,							
		ED 12/14/22 COMPLETED 12/14/22				83 ft (appr	ox.)	HOLE	SIZE	4"			
		DNTRACTOR Taber Drilling											
		Solid Flight Augers/ Mud Rotary				LING 7.00							
		A. Troia CHECKED BY J. Buck ing backfilled with cement grout and bentonite chips.				_ING							
NOTE	3 <u>- DOI</u>		AF			·	1		1		ERB		
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID		s ∣≻	FINES CONTENT
0		(SW) GRAVELLY SAND with SILT, dense to medium den dark gray (2.5Y 3/1), moist, well graded gravel, well grade weak cementation, (FILL).	nse, very ed sand,									<u> </u>	
_				SPT S1	44	21-17-17 (34)	_						
-				SPT S2	56	11-9-8 (17)							
5				SPT S3	100	10-11-9 (20)	-						;
_		∑ Becomes saturated.		SPT S4	22	7-2-1 (3)							
- 10 -		Hole caving at 10'; switch to mud-rotary.		MCS	0	4-6-14 (20)	-						
-		(SW) GRAVELLY SAND, very dense to medium dense, or grayish brown (2.5Y 4/2), wet, poorly sorted, well graded, subangular to subrounded gravel, mostly medium to coar some fine sand, moderate cementation, trace silt, non-str (NATIVE ALLUVIAL DEPOSITS).	se sand,										
<u>15</u>		Driller notes significantly harder (15-20'); broken cobble fr in sample.	agments	MCS S5	67	30-26-26 (52)							
-													
20	Į Š. Š.												

	ST	7					BO	RIN	IG N		R B 2 0	
					_							
	ENT <u>[</u> DJECT					or Way Geo Blue Lake,						
DEPTH	0	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID LIMIT		FINES CONTENT (%)
_				SPT S7	56	15-21-30 (51)						
		Rig chatter (23')		SPT		19-10-13						
				SPT S8	56	(23)						
		(SW) WELL GRADED SAND with GRAVEL, dense, dark g brown (2.5Y 4/2), wet, moderate cementation, poorly sorte stratification, angular, medium to coarse sand, broken cob gravels in sampler.	rayish d, weak bles and	SPT S9	56	21-22-20 (42)						
3500 - //EORENA/GEO		Abundant broken chert gravels in cuttings.		SPT S10	56	31-27-24 (51)						
הבטובנים פת כטבטאואס - פוואו אום טאיפטו - אאנא זינ		Bottom of borehole at 36.5 feet.										

	- ZA	7					BO	RIN	IG N	NUN		R E ≣ 1 C	
CLIEN	NT Dar	100	PROJEC	T NAME	Taylo	or Way Geo	otechn	ical St	udy				
PROJ	ECT NU	JMBER 022138				Blue Lake,	Humb	oldt C	ounty				
DATE	START	ED _12/14/22 COMPLETED _12/14/22				85 ft (appr	ox.)	HOLE	SIZE	4"			
DRILL		ONTRACTOR _ Taber Drilling											
		THOD Rotary Hollow Stem Auger				LING _7.00							
		A. Troia CHECKED BY J. Buck				_ING							
NOTE	S Bori	ing backfilled with cement grout and bentonite chips.	Ar								ERBE		
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)			3 ≻	FINES CONTENT
<u> </u>		(GW) WELL GRADED GRAVEL, dence, very dark gray (2 dry, subangular gravels, trace silt, weak cementation, cob to 6" in upper 2', (FILL).	2/5Y 4/1), bles up	SPT S1	100	19-20-21 (41)	-						
5		(SW) GRAVELLY SAND, dense, very dark gray (2.5Y 4/1 moist, well graded sand, subangular, fine to coarse gravel cementation, (FILL).), dry to l, weak	SPT S2	83	16-18-15 (33)	-						
· _		(SW) WELL GRADED SAND with GRAVEL, medium den becomes wet at 7', weak cementation, (FILL). ⊻		SPT S3	100	10-8-8 (16)	-						6
 10		Gravel stuck in sample shoe.		SPT	0	5-4-2 (6)	-						
		(ML) SILTY SAND, loose, very dark gray (2/5Y 3/1), moist fine sand with minor coarse angular sand, (FILL). 3" wood fragment.	t, very	SPT S4	100	2-1-2 (3)							38
		(SM) SILTY SAND with GRAVEL, medium dense, dark gr angular sand, strong stratification, subrounded to subangu mostly fine gravel with medium and coarse gravel, chert-ri to no cementation, (NATIVE ALLUVIAL DEPOSITS).	ular,	SPT S5	100	6-9-14 (23)	-						32
20		(Continued Next Page)											

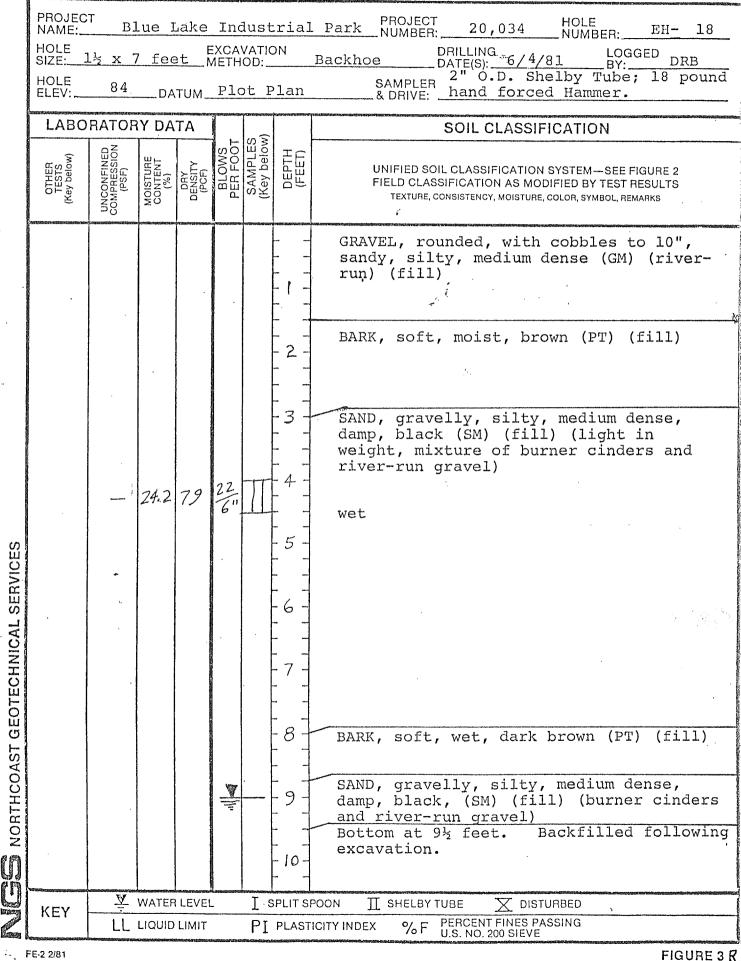
		7					BO	RIN	GN	IUN	IBE PAGE	R B = 2 0	8-2 F 2
CLIEN	NT Da	incoP	ROJECT	NAME	<u>Taylo</u>	or Way Geo	otechn	i <u>cal </u> St	udy				
PROJ	IECT N	UMBER 022138 P	ROJECT			Blue Lake,	Humb	oldt C	ounty				
(tt) 20	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIMIT LIMIT			FINES CONTENT (%)
		Rig chatter (22-25'), gravel and cobbles likely.		SPT S6	100	13-26-27 (53)							
		(SW) WELL GRADED SAND with GRAVEL, medium dense gray, wet, stratified, subrounded to subangular gravel with w moderate cementation. Heaving sand (27')	, dark eak to	SPT S7	100	9-14-23 (37)							4
							-						
				SPT S8	100	26-22-23 (45)							
				SPT S9	100	14-20-25 (45)							
- 00.5		Bottom of borehole at 36.5 feet.											


	Ялл	7					BO	RIN	IG N	NUN		R E E 1 C	
CLIEN	NT Da	inco	PROJEC		Taylo	or Way Geo	otechni	ical St	udy				
PROJ	ECT N		PROJEC	T LOCAT		Blue Lake,	Humb	oldt C	ounty				
DATE	STAR	TED 12/14/22 COMPLETED 12/15/22	GROUND	ELEVA		85 ft (appr	ox.)	HOLE	SIZE	4"			
DRILL	ING C	ONTRACTOR _ Taber Drilling											
DRILL	ING M	ETHOD Rotary Hollow Stem Auger				LING _ 7.00							
		A. Troia CHECKED BY J. Buck				.ING							
NOTE	S _Boi	ring backfilled with cement grout and bentonite chips.	AF	ter Dri	LLING			1	1				
	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)			s ≻	FINES CONTENT
0		(GW) WELL GRADED GRAVEL, very dense, gray, dry, co up to 8", minor silt, subrounded to rounded gravel, modera cementation, compacted, (FILL).	bbles te										
_		(GW) SANDY GRAVEL, very dense, dark gray, dry to mois		SPT	50	50/4"							
		medium to coarse, angular sand, broken cobbles and coar gravel in sampler, weak cementation, (FILL).	se										
. –		(GW) WELL GRADED GRAVEL with SAND, very dense, or		SPT	0	50/4"							
5		gray, wet, abundand broken/crushed gravel, medium to co angular sand, minor silt, (FILL) Rig grinding and hopping (5-7')	arse										
-		$\overline{\Delta}$		SPT	56	13-30-45 (75)	-						
				SPT	22	7-2-1 (3)	-						
		(SM) SILTY SAND, medium dense, very dark gray (2.5YR wet, minor fine to medium sand, few fine to coarse, suban subrounded gravels, slightly clayey, low plasticity, low toug no cementation, fibrous wood, stick fragments, (FILL).	gular to	SPT	100	1-4-11 (15)				35	31	4	2
-		(SW) WELL GRADED SAND with GRAVEL, medium dens dry to moist, medium to coarse sand, fine to coarse, angul subangular gravel, no cementation, (NATIVE ALLUVIAL DEPOSITS).	se, gray, ar to	SPT	100	18-15-12 (27)							
15		(SM) SILTY SAND with GRAVEL, medium dense, dark gra (2.5YR 4/1), wet, angular to subangular, medium to coarse	 ay e sand			9-10-10							
-		subangular, fine to coarse gravel, weak cementation.		SPT	28	(20)							
20				SPT	44	22-28-21 (49)							

		97	7					BO	RIN	GN	IUN		R B 2 0	-3 F 2
	K													
		IT <u>Da</u> ECT N	nco UMBER 022138				or Way Geo Blue Lake,			-				
	(t) (t) 20	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	<u> </u>	PLASTIC PLASTIC LIMIT		FINES CONTENT (%)
S\2022\022138_TAYLORWAYDANCO.GPJ	 <u>25</u>		(SW) WELL GRADED SAND with GRAVEL, dense, dark of wet, stratified, sand coarsens downward, angular, quartz-r with moderate cementation, minor silt.	gray, ich sand	SPT	100	19-20-22 (42)							
GEOTECH BH COLUMNS - GINT STD US.GDT - 3/3/23 13:00 - \\EUREKA\GEOGROUPIGINTLIBRARY\BENTLEY\GINTCL\PROJECTS\PROJECT_FILES\2022/022138_TAYLORWAYDANCO.GPJ			Bottom of borehole at 26.5 feet.											

CLIENT _Danco PROJECT NAME _Taylor Way Geotechnical Study PROJECT NUMBER_022138 PROJECT LOCATION _Blue Lake, Humboldt County DATE STARTED _12/15/22 COMPLETED _12/15/22 GROUND ELEVATION _83 ft (approx.) _ HOLE SIZE _4" GROUND WATER LEVELS: DRILLING CONTRACTOR _Taber Drilling GROUND WATER LEVELS: GROUND WATER LEVELS: DRILLING METHOD _Solid Flight Augers/ Mud Rotary Image: Checked BY _J. Buck	TTERBERG LIMITS
DATE STARTED 12/15/22 COMPLETED 12/15/22 GROUND ELEVATION 83 ft (approx.) HOLE SIZE 4" DRILLING CONTRACTOR Taber Drilling GROUND WATER LEVELS: GROUND WATER LEVELS: GROUND WATER LEVELS: DRILLING METHOD Solid Flight Augers/ Mud Rotary LOGGED BY A. Troia CHECKED BY J. Buck AT TIME OF DRILLING 6.00 ft / Elev 77.00 ft NOTES Boring backfilled with cement grout and bentonite chips. AT TIME OF DRILLING AT END OF DRILLING MATERIAL DESCRIPTION MATERIAL DESCRIPTION Material Description Material Description 0 (GW) WELL GRADED SANDY GRAVEL, dense, gray, dry, minor silt, angular to subangular fine to coarse gravel, compacted cobbies up to 8" in upper 18", (FILL). SPT 56 20-18-20 (38) 5 (SW) WELL GRADED SAND with GRAVEL, medium dense, dark brownish gray, wet, angular to subangular, quartz-rich sand, subangular to sub	TTERBERG LIMITS
DRILLING CONTRACTOR Taber Drilling GROUND WATER LEVELS: DRILLING METHOD Solid Flight Augers/ Mud Rotary ✓ AT TIME OF DRILLING 6.00 ft / Elev 77.00 ft LOGGED BY A. Troia CHECKED BY J. Buck NOTES Boring backfilled with cement grout and bentonite chips. AT END OF DRILLING MATERIAL DESCRIPTION MATERIAL DESCRIPTION 0 (GW) WELL GRADED SANDY GRAVEL, dense, gray, dry, minor silt, angular to subangular fine to coarse gravel, compacted cobles up to 8" in upper 18", (FILL). **R-Value** = 59 SPT 5 (SW) WELL GRADED SAND with GRAVEL, medium dense, dark brownish gray, wet, angular to subangular, quartz-rich sand, subangular to subangular quartz-rich sand, subangular to subangular, quartz-rich sand, subangular to subangular, quartz-rich sand, subangular to coarse gravel, wetak	TTERBERG LIMITS
DRILLING METHOD _Solid Flight Augers/ Mud Rotary ✓ AT TIME OF DRILLING _6.00 ft / Elev 77.00 ft LOGGED BY _A. Troia CHECKED BY J. Buck AT END OF DRILLING NOTES _Boring backfilled with cement grout and bentonite chips. AFTER DRILLING MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION G(GW) WELL GRADED SANDY GRAVEL, dense, gray, dry, minor silt, angular to subangular fine to coarse gravel, compacted cobbles up to 8" in upper 18", (FILL). **R-Value** = 59 SPT 56 20-18-20 (38) V SPT 56 17-12-10 (22) (SW) WELL GRADED SAND with GRAVEL, medium dense, dark brownish gray, wet, angular to subangular to	
A Troia CHECKED BY J. Buck A TEND OF DRILLING NOTES Boring backfilled with cement grout and bentonite chips. AFTER DRILLING HL42 O O O O O O O O O O O O O	
NOTES Boring backfilled with cement grout and bentonite chips. AFTER DRILLING	
HL30 MATERIAL DESCRIPTION MATERIAL DESCRI	LIMITS
0 (GW) WELL GRADED SANDY GRAVEL, dense, gray, dry, minor silt, angular to subangular fine to coarse gravel, compacted cobbles up to 8" in upper 18", (FILL). **R-Value** = 59 SPT 56 20-18-20 (38) 5 SPT 56 17-12-10 (22) 7 (SW) WELL GRADED SAND with GRAVEL, medium dense, dark brownish gray, wet, angular to subangular, quartz-rich sand, subangular to subrounded, fine to coarse gravels, weak SPT 67 7-7-9 (16)	LIMIT PLASTIC LIMIT PLASTICITY SINDEX
5 (GW) WELL GRADED SANDY GRAVEL, dense, gray, dry, minor silt, angular to subangular fine to coarse gravel, compacted cobbles up to 8" in upper 18", (FILL). **R-Value** = 59 5 5 (SW) WELL GRADED SAND with GRAVEL, medium dense, dark brownish gray, wet, angular to subangular, quartz-rich sand, subangular to subangular to subangular, quartz-rich sand, subangular to subangular to subangular, quartz-rich sand, subangular to subangular to subangular, quartz-rich sand, subangular to subangular, quartz-rich sand, subangular to subangular to subangular, quartz-rich sand, subangular to subangular to subangular, quartz-rich sand, subangular to subangular, quartz-rich sand, subangular to subangular, quartz-rich sand, subangular to subangular to subangular to subangular, quartz-rich sand, subangular to subangular	
5 (SW) WELL GRADED SAND with GRAVEL, medium dense, dark brownish gray, wet, angular to subangular, quartz-rich sand, subangular to subrounded, fine to coarse gravels, weak	
5 (22) (2)	
brownish gray, wet, angular to subangular, quartz-rich sand, subangular to subrounded, fine to coarse gravels, weak	
10 (SW) WELL GRADED GRAVELLY SAND. dense, dark gray, wet, angular, quartz-rich sand, moderate cementation. MCS 67 8-21-31 (52) 10 10 10 10 10 10 10 10	
SPT 44 10-11-8 (19)	

Su						BO	RIN	G N	IUN	IBE PAGE	R B 2 0	-4 F 3	
		PROJECT NAME _ Taylor Way Geotechnical Study PROJECT LOCATION _ Blue Lake, Humboldt County											
GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE	NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIMIT LIMIT	IMITS	3	FINES CONTENT (%)	
	Becomes well-cemented.			67	19-21-23 (44) 26-28-31 (59)								
	3/N), dry to moist, high toughness, moderate to strong cementation, low to medium plasticity, well graded sand	ibers,	SPT	22	4-7-11 (18)				25	16	9		
	GRAPHIC LOG	Decomes well-cemented. Contact based on change in drilling. C(L) LEAN CLAY with SAND, very stiff, very dark gray (GLE) S(L) LEAN CLAY with SAND, very stiff, very dark gray (GLE) S(L) LEAN CLAY with SAND, very stiff, very dark gray (GLE) S(L) LEAN CLAY with SAND, very stiff, very dark gray (GLE) S(L) LEAN CLAY with SAND, very stiff, very dark gray (GLE) S(L) LEAN CLAY with SAND, very stiff, very dark gray (GLE) S(L) LEAN CLAY with SAND, very stiff, very dark gray (GLE) S(L) LEAN CLAY with SAND, very stiff, very dark gray (GLE) S(L) LEAN CLAY with SAND, very stiff, very dark gray (GLE) S(L) LEAN CLAY with SAND, very stiff, very dark gray (GLE) S(L) LEAN CLAY with SAND, very stiff, very dark gray (GLE) S(L) LEAN CLAY with SAND, very stiff, very dark gray (GLE) S(L) LEAN CLAY with SAND, very stiff, very dark gray (GLE) S(L) LEAN CLAY with SAND, very stiff, very dark gray (GLE) S(L) LEAN CLAY with SAND, very stiff, very dark gray (GLE) S(L) LEAN CLAY with SAND, very stiff, very dark gray (GLE)	DIGOT NUMBER 022133 PROJECT LO DIGOT MATERIAL DESCRIPTION DIGOT DIGOT MATERIAL DESCRIPTION DIGOT DIGOT MATERIAL DESCRIPTION DIGOT DIGOT Becomes well-cemented. DIGOT DIGOT Contact based on change in dfilling. DIGOT CL CONTACT based on change in dfilling. DIGOT DIGOT DIGOT DIGOT DIGOT	DIAGNON MATERIAL DESCRIPTION Material DESCRIPTION Diagon MATERIAL DESCRIPTION SPT Set Set SPT Set Set Set Set Set Set	Decomes well-cemented. SPT 67 Contact based on change in drilling. (C) LEAN CLAY with SAND, very stiff, very dark gray (GLEY 1 on-statified, very fine wood an charace lo strong cementation, low to medium plasticity, well graded sand, non-statified, very fine wood an charace lo strong cementation, but to medium plasticity, well graded sand, non-statified, very fine wood an charace lo strong cementation, but to medium plasticity, well graded sand, non-statified, very fine wood an charace lo strong cementation, but to medium plasticity, well graded sand, non-statified, very fine wood an charace lo strong cementation, but to medium plasticity, well graded sand, non-statified, very fine wood an charace lo strong cementation, but to medium plasticity, well graded sand, non-statified, very fine wood an charace lo strong cementation, but to medium plasticity, well graded sand, non-statified, very fine wood an charace lo strong cementation, but to medium plasticity, well graded sand, non-statified, very fine wood an charace lo strong cementation, but to medium plasticity, well graded sand, non-statified, very fine wood and charace lo strong cementation, but to medium plasticity, well graded sand, non-statified, very fine wood and charace lo strong cementation, but to medium plasticity, well graded sand, non-statified, very fine wood and charace lo strong cementation, but to medium plasticity, well graded sand, non-statified, very fine wood and charace lo strong cementation, but to medium plasticity, well graded sand, non-statified, very fine wood and charace lo strong cementation, but to medium plasticity, well graded sand, non-statified, very fine wood and charace lo strong cementation, but to medium plasticity, well graded sand, non-statified, very fine wood and charace lo strong cementation, but to medium plasticity, well graded sand, non-statified, very fine wood and charace lo strong cementation cementation strong cementa	DECT NUMBER 022132 PROJECT LOCATION Blue Lake. 01000 MATERIAL DESCRIPTION 01000 02000 02000 000000 000000 000000 000000 000000 000000 000000 000000 000000 00000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000000 00000000000000	Decomes well-cemented. SPT 67 26-28-31 (59) Contact based on change in drilling. (C1) LEAN CLAY with SAND, very stift, very dark gray (GLEY 1 Ny to most, help togenes and contact based on change in drilling. (C1) LEAN CLAY with SAND, very stift, very dark gray (GLEY 1 Ny to most, help togenes and contact based on change in drilling. (C1) LEAN CLAY with SAND, very stift, very dark gray (GLEY 1 Ny to most, help togenes and contact based on change in drilling. (C1) LEAN CLAY with SAND, very stift, very dark gray (GLEY 1 Ny to most, help togenes and contact based on change in drilling. (C1) LEAN CLAY with SAND, very stift, very dark gray (GLEY 1 Ny to most, help togenes and contact based on change in drilling. (C1) LEAN CLAY with SAND, very stift, very dark gray (GLEY 1 Ny to most, help togenes and contact based on change in drilling. (C1) LEAN CLAY with SAND, very stift, very dark gray (GLEY 1 Ny to most, help togenes and contact based on change in drilling. (C1) LEAN CLAY with SAND, very stift, very dark gray (GLEY 1 Ny to most, help togenes and contact based on change in drilling. (C1) LEAN CLAY with SAND, very stift, very dark gray (GLEY 1 Ny to most, help togenes and contact based on change in drilling. (C1) LEAN CLAY with SAND, very stift, very dark gray (CLEY 1 Ny to most, help togenes and contact based on change in drilling. (C1) LEAN CLAY with SAND, very stift, very dark gray (CLEY 1 Ny to most, help togenes and contact based on change in drilling. (C1) LEAN CLAY with SAND, very stift, very dark gray (CLEY 1 Ny to most, help togenes and contact based on change in drilling. (C1) LEAN CLAY with SAND, very stift, very dark gray (CLEY 1 Ny togenes and togenes and contact togenes and	Decomes well-cemented. PROJECT LOCATION Bue Lake, Humbold C Outgoin MATERIAL DESCRIPTION III H H H H H H H H H H H H H H H H H H	December 022132 PROJECT LOCATIOn Blue Lake, Humbold Courty and optimized MATERIAL DESCRIPTION In the second optimized o	NT_Danco PROJECT NAME_Taylor Way Geolechnical Study VECT NUMBER_022138 PROJECT LOCATION_Blue Lake, Humbold County Image: Control of the state of the	PROJECT NAME Taylor Way Geotechnical Study JECT NUMBER 022138 PROJECT NAME Taylor Way Geotechnical Study JOURD NUMBER 022138 PROJECT LOCATION Blue Lake, Humbold County Jung Hard MATERIAL DESCRIPTION Jung Hard Jung Hard TERMER Jung Hard MATERIAL DESCRIPTION Jung Hard Jung Hard TERMER Jung Hard MATERIAL DESCRIPTION Jung Hard Jung Hard Jung Hard TERMER Jung Hard Jung Hard	PROJECT NAME _ Taxlor Way Gestechnical Study PROJECT NAME _ Taxlor Way Gestechnical Study PROJECT NAME _ Taxlor Way Gestechnical Study PROJECT LOCATION _ Blue Lake, Humbold(County TEMPERG Decomes well-commented. SPT 56 19:21:23 Becomes well-commented. SPT 67 26-28-31 Gesting tasked on charge in dilling GL, for the tasked	


	ET.	$\overline{\lambda}$				BO	RIN	IG N	IUN	IBE PAGE	R B 3 0	8-4 0F 3
CL	ENT _	Danco P	ROJECT NAM	IE Tayl	or Way Geo	otechni	ical St	udy				
			ROJECT LOC	ATION	Blue Lake,	Humb	oldt C	ounty				
DEPTH	(II) GRAPHIC	MATERIAL DESCRIPTION	SAMPLE TYPE NIJMBFR	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)				FINES CONTENT (%)
8_TAYLORWAYDANCO.GPJ	5	Rig chatter (45')										
JECT_FILES/2022/022136		Contact estimated. (SC) CLAYEY SAND with GRAVEL, very dense, dark yellow brown (10YR 3/6), moist, fine sand with rounded, fine to coal gravel, strong cementation with medium toughness, medium plasticity fines, (FALOR FORMATION)	rse			-						
SVPRO			SF	РТ 67	33-32-38 (70)							26
		Bottom of borehole at 51.5 feet.										

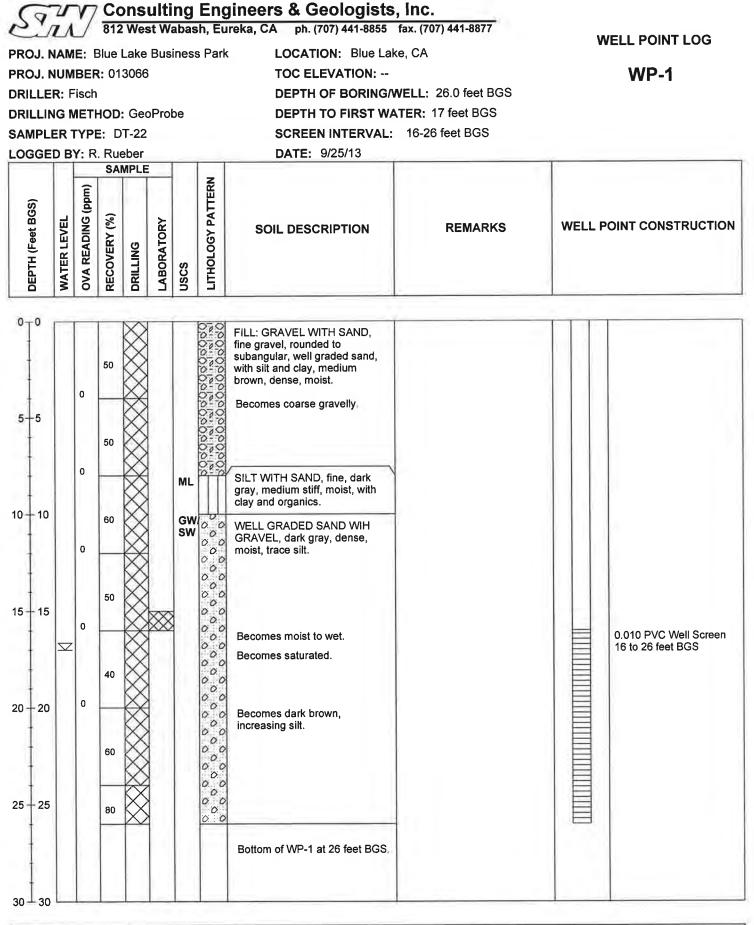
SUBSURFACE EXPLORATION LOG

PROJEC NAME: HOLE	B1		. 6	EXCA	VATIO	 DN	Park PROJECT 20,034 HOLE EH- 8 NUMBER: 20,034 NUMBER: EH- 8
HOLE HOLE	80			NETH		lan	BackhoeDRILLING DATE(S):LOGGED BY:DRBSAMPLER2" O.D. Shelby Tube; 18 pound & DRIVE:hand forced Hammer.
LABO	RATOR	Y DA	TA				SOIL CLASSIFICATION
OTHER TESTS (Key below)	UNCONFINED COMPRESSION (PSF)	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	BLOWS PER FOOT	SAMPLES (Key below)	DEPTH (FEET)	UNIFIED SOIL CLASSIFICATION SYSTEM—SEE FIGURE 2 FIELD CLASSIFICATION AS MODIFIED BY TEST RESULTS TEXTURE, CONSISTENCY, MOISTURE, COLOR, SYMBOL, REMARKS
							GRAVEL, rounded, silty, sandy, medium dense, moist, gray (GM) (river-run) 50% bark in upper six inches (probably fill; hole is located in former pond area)
						- 6	Wet Caving Bottom. Backfilled following excavation
КЕҮ		WATEF				SPLIT S	
FE-2 2/81		LIQUID	LIMIT	owner fan	PI	PLAST	ICITY INDEX % F PERCENT FINES PASSING U.S. NO. 200 SIEVE

SUBSURFACE EXPLORATION LOG

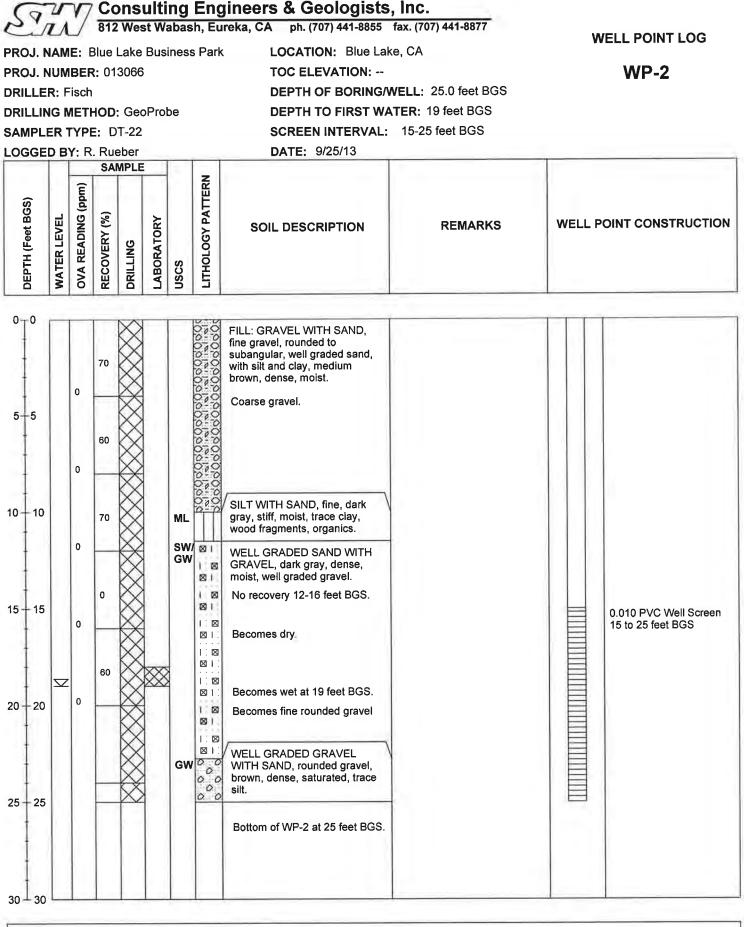
JECT: Blue I ATION: Blue AVATION MET GED BY: EJ	Lake, CA THOD: B	ness Pa	ark		Vabash, Eureka, CA 95501 P JOB NUMBER: DATE: 10/1/ TOTAL DEPTH SAMPLE TYPE:	TEST PIT NUMBER TP-1					
DEPTH (FT)	BULK SAMPLES SS SAMPLES	PID (OVA ppm)	USCS	PROFILE	DESCRIPTION	% Moisture	Dry Density (pcf)	Unc. Com. (psf)	U.C. (psf) by P.P.	% Passing 200	REMARKS
1.0 2.0	×	0.0	GP/ SM		FILL: GRAVEL WITH SILT AND SAND, fine to coarse rounded gravel, dark gray to brown, medium dense, dry, non-plastic.	-					No HC Odor or Sheen
	8	0.0		8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 -							
				1.2	Bottom of TP-1 at 5.0 feet BGS.						
-8.0											
-9.0											
10.0											
11.0											

OJECT: Blue I	Lake Busir			est v	Vabash, Eureka, CA 95501 p JOB NUMBER:				ian. (
CATION: Blue CAVATION MET GGED BY: EJ	Lake, CA IHOD: B				DATE: 10/1/ TOTAL DEPTH SAMPLE TYPE:	TEST PIT NUMBER TP-2					
DEPTH (FT)	BULK SAMPLES SS SAMPLES	PID (OVA ppm)	nscs	PROFILE	DESCRIPTION	% Moisture	Dry Density (pcf)	Unc. Com. (psf)	U.C. (psf) by P.P.	% Passing 200	REMARKS
0.0		-	GP/ SM	81	FILL: GRAVEL WITH SILT AND				<u> </u>	<u> </u>	No HC Odor or Sheen
	\bigotimes	0.0			SAND, fine to coarse rounded gravel, dark gray to brown, medium dense, dry, non-plastic.						
				811 183 1831							
3.0	\bigotimes	0.0									
4.0											
-5.0					Bottom of TP-2 at 4.5 feet BGS.						
-6.0											
9.0											
10.0											
11.0											


DJECT: Blue L ATION: Blue AVATION MET GED BY: EJ	Lake, CA HOD: B				JOB NUMBER: 013066 DATE: 10/1/13 TOTAL DEPTH OF TEST PIT: 4.5 feet BGS SAMPLE TYPE: Discrete						TEST PIT NUMBER TP-3
DEPTH (FT)	BULK SAMPLES SS SAMPLES	PID (OVA ppm)	nscs	PROFILE	DESCRIPTION	% Moisture	Dry Density (pcf)	Unc. Com. (psf)	U.C. (psf) by P.P.	% Passing 200	REMARKS
0.0 1.0 2.0 3.0		0.0	GP/ SM		FILL: GRAVEL WITH SILT AND SAND, fine to coarse rounded gravel, dark gray to brown, medium dense, dry, non-plastic.						No HC Odor or Sheen
					Bottom of TP-3 at 4.5 feet BGS.						
— -6.0 — -7.0											
10.0											

DJECT: Blue CATION: Blue CAVATION ME CGED BY: EJ	e Lake, CA THOD: Ba				JOB NUMBER: DATE: 10/1/ TOTAL DEPTH SAMPLE TYPE	TEST PIT NUMBER TP-4					
DEPTH (FT)	BULK SAMPLES SS SAMPLES	PID (OVA ppm)	NSCS	PROFILE	DESCRIPTION	% Moisture	Dry Density (pcf)	Unc. Com. (psf)	U.C. (psf) by P.P.	% Passing 200	REMARKS
1.0 2.0	×	1.1	GP/ SM		FILL: GRAVEL WITH SILT AND SAND, fine to coarse rounded gravel, dark gray to brown, medium dense, dry, non-plastic.						No HC Odor or Sheen
— -3.0 — -4.0	8	0.0									Wood/logs observed
					Bottom of TP-4 at 4.5 feet BGS.						
10.0											

CATION: Blue CAVATION MET	HOD: Ba				JOB NUMBER: DATE: 10/1/1 TOTAL DEPTH SAMPLE TYPE:	GS	TEST PIT NUMBER TP-5				
DEPTH (FT)	BULK SAMPLES SS SAMPLES	PID (OVA ppm)	nscs	PROFILE	DESCRIPTION	% Moisture	Dry Density (pcf)	Unc. Com. (psf)	U.C. (psf) by P.P.	% Passing 200	REMARKS
-0.0 -1.0 -2.0 -3.0 -4.0 -5.0 -6.0 -7.0 -8.0 -9.0 -10.0 -11.0		0.0	GP/ SM		FILL: GRAVEL WITH SILT AND SAND, fine to coarse rounded gravel, dark gray to brown, medium dense, dry, non-plastic.						No HC Odor or Sheen


JECT: Blue L ATION: Blue AVATION MET GED BY: EJI	Lake, CA HOD: B	L .			JOB NUMBER: 013066 DATE: 10/1/13 TOTAL DEPTH OF TEST PIT: 5.0 feet BGS SAMPLE TYPE: Discrete						TEST PIT NUMBER TP-6
DEPTH (FT)	BULK SAMPLES SS SAMPLES	PID (OVA ppm)	nscs	PROFILE	DESCRIPTION	% Moisture	Dry Density (pcf)	Unc. Com. (psf)	U.C. (psf) by P.P.	% Passing 200	REMARKS
- 0.0			GP/ SM	1 83 1 83 1 83	FILL: GRAVEL WITH SILT AND SAND, fine to coarse rounded gravel, dark gray to brown, medium						No HC Odor or Sheen
1.0	\otimes	0.0			dense, dry, non-plastic.						
— -2.0											
-3.0	×										
	×	0.0									
				1 20							
					Bottom of TP-6 at 5.0 feet BGS.						
7.0											
-8.0											
10.0											
11.0											

DJECT: Blue L CATION: Blue CAVATION MET CGED BY: EJN	Lake, CA HOD: Ba	iess Pa	ark		Vabash, Eureka, CA 95501 P JOB NUMBER: DATE: 10/1/ TOTAL DEPTH SAMPLE TYPE	TEST PIT NUMBER TP-7					
DEPTH (FT)	BULK SAMPLES SS SAMPLES	PID (OVA ppm)	nscs	PROFILE	DESCRIPTION	% Moisture	Dry Density (pcf)	Unc. Com. (psf)	U.C. (psf) by P.P.	% Passing 200	REMARKS
0.0	П		GP/ SM		FILL: GRAVEL WITH SILT AND SAND, fine to coarse rounded						No HC Odor or Sheen
1.0					gravel, dark gray to brown, medium dense, dry, non-plastic.						
	\otimes	0.0									
2.0											
	\boxtimes	0.0									
-4.0											
5.0				. X X		-					
					Bottom of TP-7 at 5.0 feet BGS.						
7.0											
10.0											
11.0											

BORING LOG

Page Number 1 of 1

BORING LOG

Page Number 1 of 1

Laboratory Testing Results

DENSITY BY DRIVE- CYLINDER METHOD (ASTM D2937)

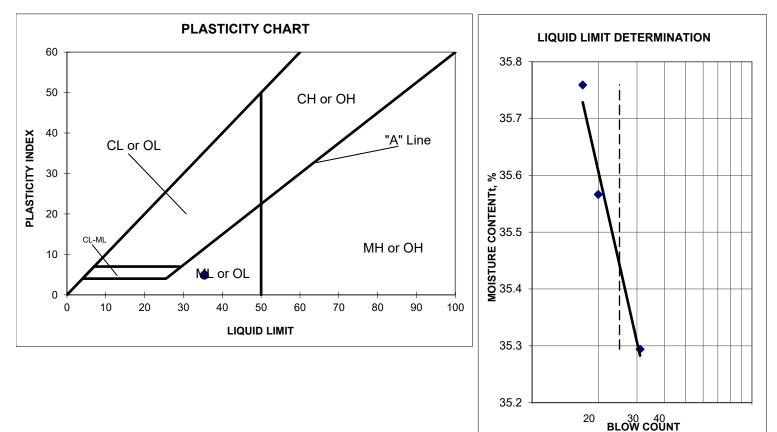
Project Name: Danco Taylor	Way	Project Number:	022138
Performed By: JMA Checked By: ALG		Date:	1/12/2023 1/30/2023
Checked By: ALG Project Manager: JB		Date:	1/30/2023
Lab Sample Number	23-034		
Boring Label	B4		
Sample Depth (ft)	10-10.5		
Diameter of Cylinder, in	2.42		
Total Length of Cylinder, in.	6.00		
Length of Empty Cylinder A, in.	0.00		
Length of Empty Cylinder B, in.	0.07		
Length of Cylinder Filled, in	5.93		
Volume of Sample, in ³	27.28		
Volume of Sample, cc.	446.97		

Pan #	ss15		
Weight of Wet Soil and Pan	1206.0		
Weight of Dry Soil and Pan	1117.9		
Weight of Water	88.1		
Weight of Pan	194.2		
Weight of Dry Soil	923.7		
Percent Moisture	9.5		
Dry Density, g/cc	2.07		
Dry Density, lb/ft ³	129.0		

PERCENT PASSING # 200 SIEVE (ASTM - D1140)

Project Name:	Danco Taylo JMA	r Way	Project Num	ber:	022138
Performed By: Checked By:			Date: Date:		1/16/2022 1/30/2023
Project Manager:	JB		Date.		1/30/2023
	·		-		
Lab Sample Number	23-003	23-014	23-015	23-018	23-023
Boring Label	B1	B2	B2	B2	B3
Sample Depth	3-4.5	6-7.5	10-11.5	25-26.5	6-7.5
Pan Number	ss3	ss7	s11	ss11	ss1
Dry Weight of Soil & Pan	551.5	839.9	426.8	354.1	614.9
Pan Weight	197.1	192.9	192.6	192.6	194.8
Weight of Dry Soil	354.4	647.0	234.2	161.5	420.1
Soil Weight Retained on #200&Pan	523.4	800.8	338.9	347.3	579.5
Soil Weight Passing #200	28.1	39.1	87.9	6.8	35.4
Percent Passing #200	7.9	6.0	38	4.2	8.4
	1	1		1	
Lab Sample Number	23-025	23-031	23-035	23-039	
Boring Label	B3	B4	B4	B4	
Sample Depth	10-11.5	4-5.5	15-16.5	50-51.5	
Pan Number	ss14	ss9	ss12	ss10	
Dry Weight of Soil & Pan	527.6	600.9	556.5	494.0	
Pan Weight	192.6	196.4	194.2	195.4	
Weight of Dry Soil	335.0	404.5	362.3	298.6	
Soil Weight Retained on #200&Pan	430.9	574.6	503.2	416.7	
Soil Weight Passing #200	96.7	26.3	53.3	77.3	
Percent Passing #200	29	6.5	15	26	

ENGINEERS & GEOLOGISTS, INC.


812 W. Wabash Eureka, CA 95501-2138 Tel: 707/441-8855 FAX: 707/441-8877 E-mail: shninfo@shn-engr.com

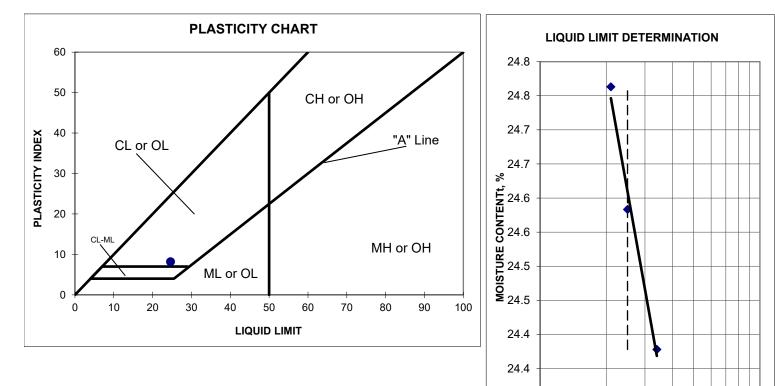
LIQUID LIMIT, PLASTIC LIMIT, and PLASTICITY INDEX (ASTM-D4318)

JOB NAME:	Danco Taylor Way	JOB #:	022138	LAB SAMPLE #:	23-025
SAMPLE ID:	B3 @ 10-11.5	PERFORMED BY:	JMA	DATE:	1/17/2023
PROJECT MANAGER:	JB	CHECKED BY:	ALG	DATE:	1/30/2023
_	Taylor Way, Blue Lal	ke California			

LINE NO.		TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 3
Α	PAN #	15	16	4	5	6
В	PAN WT. (g)	21.150	20.330	29.210	28.770	29.520
С	WT. WET SOIL & PAN (g)	27.420	26.850	40.020	39.900	40.340
D	WT. DRY SOIL & PAN (g)	25.930	25.350	37.200	36.980	37.490
E	WT. WATER (C-D)	1.490	1.500	2.820	2.920	2.850
F	WT. DRY SOIL (D-B)	4.780	5.020	7.990	8.210	7.970
G	BLOW COUNT			31	20	17
н	MOISTURE CONTENT (E/F*100)	31.2	29.9	35.3	35.6	35.8

LIQUID LIMIT	PLASTIC INDEX	PLASTIC LIMIT
35	5	31

ENGINEERS & GEOLOGISTS, INC.


812 W. Wabash Eureka, CA 95501-2138 Tel: 707/441-8855 FAX: 707/441-8877 E-mail: shninfo@shn-engr.com

LIQUID LIMIT, PLASTIC LIMIT, and PLASTICITY INDEX (ASTM-D4318)

JOB NAME:	Danco Taylor Way	JOB #:	022138	LAB SAMPLE #:	23-038
SAMPLE ID:	B4 @ 41-41.5	PERFORMED BY:	JMA	DATE:	1/17/2023
PROJECT MANAGER:	JB	CHECKED BY:	ALG	DATE:	1/30/2023
	Taylor Way, Blue La	ke California			

LINE NO.		TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 3
-	PAN #	19	20	10	11	12
	PAN WT. (g)	16.870	17.150	29.570	28.690	29.330
С	WT. WET SOIL & PAN (g)	23.570	23.710	39.570	37.660	38.550
D	WT. DRY SOIL & PAN (g)	22.640	22.770	37.610	35.890	36.720
Е	WT. WATER (C-D)	0.930	0.940	1.960	1.770	1.830
F	WT. DRY SOIL (D-B)	5.770	5.620	8.040	7.200	7.390
G	BLOW COUNT			34	25	21
н	MOISTURE CONTENT (E/F*100)	16.1	16.7	24.4	24.6	24.8

LIQUID LIMIT	PLASTIC INDEX	PLASTIC LIMIT
25	8	16

24.3

20

BLOW COUNT

Resistance, R-Value

Caltrans Method 301

En T

Project :	Taylor Way
Client :	Danco
Sample Location :	Composite 0-1'
Sample Description :	Gravelly CLAY with sand

 Project No. :
 022138

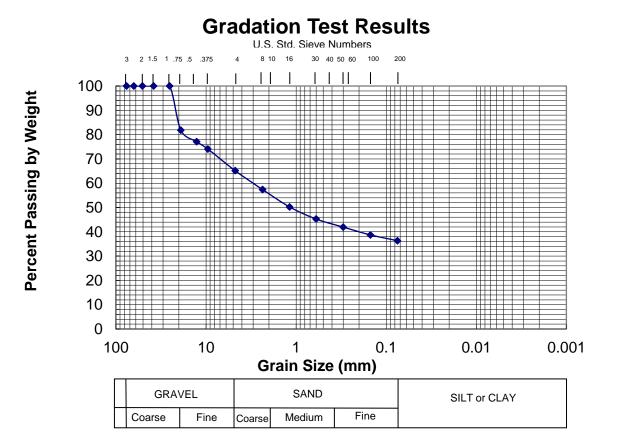
 Sampled By :
 AT

 Test Date :
 1/20/2023

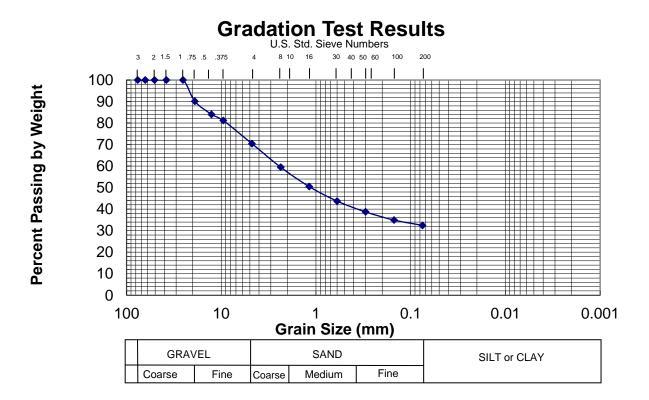
 Sample Number :
 23-147

Test Specimen	1	2	3
Moisture Content (%)	10.1	10.2	9.6
Dry Density (pcf)	127.8	125.5	126.6
Expansion Pressure (psf)	86.6	112.6	52.0
Exudation Pressure (psi)	142	345	472
Resistance Value	43	64	69

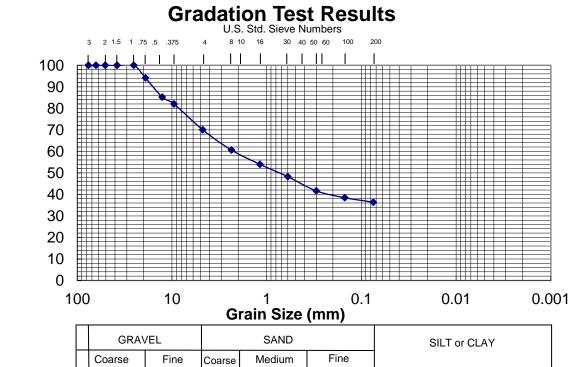
R Value at 300 psi Exudation Pressure:



PROJECT NAME:	Taylor Way Ge	otech	PROJECT NUMBER: 022138							
SAMPLE ID:	B-1, 5-6.5'		LAB SA	AMPLE:		23-00	04			
DATE TESTED:	1/16/23		CLIEN	T:		Danc	0			
			a / 4 11 1							


SIEVE	3"	2 1/2"	2"	1 1/2"	1"	3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#100	#200
SIEVE SIZE (mm)	76.2	63.5	50.8	38.1	25.4	19.1	12.7	9.53	4.75	2.36	1.18	0.600	0.300	0.150	0.075
PERCENT PASSING	100	100	100	100	100	81.9	77.1	74.1	65.2	57.4	50.2	45.3	41.9	38.7	36.3

PROJECT NAME:	Taylor Way Geotech	PRO	PROJECT NUMBER: 022138				
SAMPLE ID:	B-2, 15-16.5'	LAB	SAMPLE:	23-016			
DATE TESTED:	1/16/23	CLIE	NT:	Danco			


SIEVE	3"	2 1/2"	2"	1 1/2"	1"	3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#100	#200
SIEVE SIZE (mm)	76.2	63.5	50.8	38.1	25.4	19.1	12.7	9.53	4.75	2.36	1.18	0.600	0.300	0.150	0.075
PERCENT PASSING	100	100	100	100	100	90.1	84.1	81.2	70.4	59.5	50.5	43.8	38.7	34.9	32.5

PROJECT NAME:	Taylor Way Geotech	PROJECT NUMB	ER: 022138	
SAMPLE ID:	B-3, 15-16.5'	LAB SAMPLE:	23-027	
DATE TESTED:	1/16/23	CLIENT:	Danco	

SIEVE	3"	2 1/2"	2"	1 1/2"	1"	3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#100	#200
SIEVE SIZE (mm)	76.2	63.5	50.8	38.1	25.4	19.1	12.7	9.53	4.75	2.36	1.18	0.600	0.300	0.150	0.075
PERCENT PASSING	100	100	100	100	100	94.1	85.2	82	70	60.6	54.0	48.3	41.6	38.5	36.4

Percent Passing by Weight

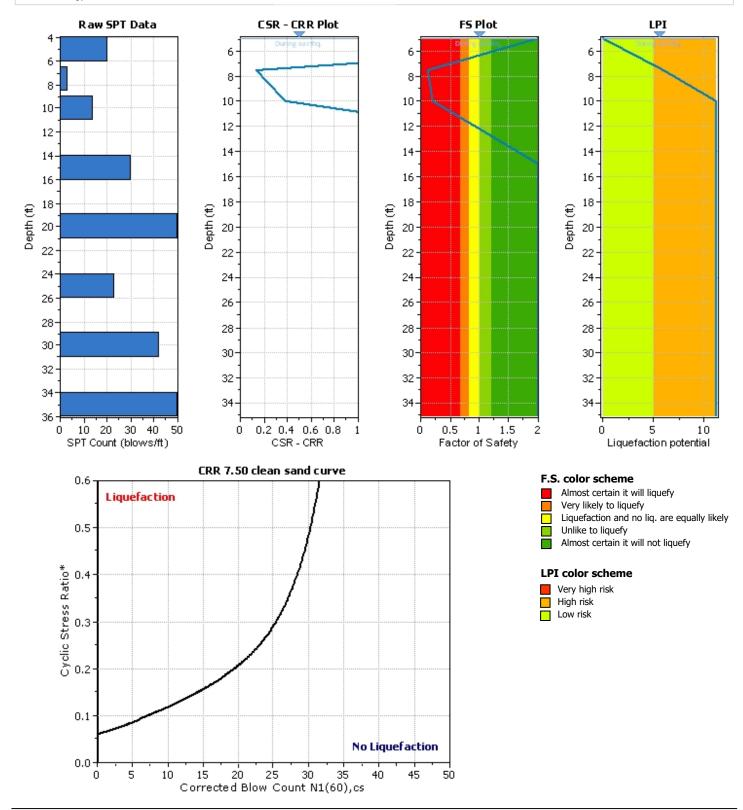
Liquefaction Analysis Results

3

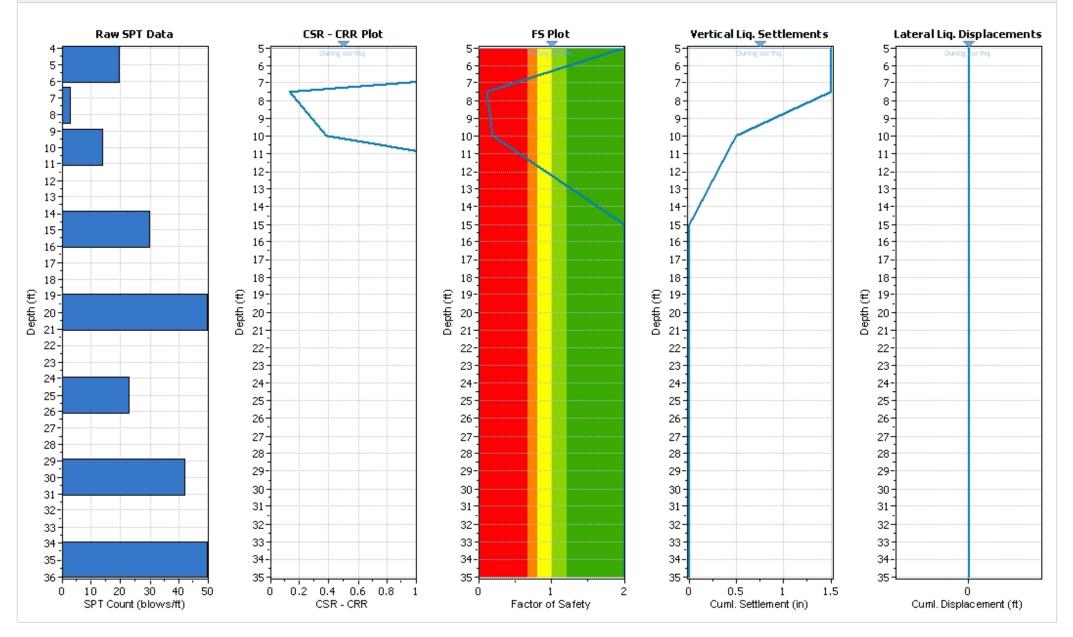
SPT BASED LIQUEFACTION ANALYSIS REPORT

Project title : DANCO-Taylor Way Geotechnical Investigation

SPT Name: B-1


Location : Blue Lake, Humboldt County, CA

:: Input parameters and analysis properties ::


Analysis method:
Fines correction method:
Sampling method:
Borehole diameter:
Rod length:
Hammer energy ratio:

Boulanger & Idriss, 2014
Boulanger & Idriss, 2014
Sampler wo liners
65mm to 115mm
3.00 ft
1.25

G.W.T. (in-situ):	7.00 ft
G.W.T. (earthq.):	5.00 ft
Earthquake magnitude M _w :	9.10 ft
Peak ground acceleration:	1.49 g
Eq. external load:	0.00 tsf

:: Overall Liquefaction Assessment Analysis Plots ::

LiqSVs 1.0.1.46 - SPT & Vs Liquefaction Assessment Software

Project File: \\eureka\Projects\2022\022138-TaylorWyDanco\Data\Liquefaction_Analysis\SPT Liquefaction Assessment.lsvs

:: Field input data ::

Test Depth (ft)	SPT Field Value (blows)	Fines Content (%)	Unit Weight (pcf)	Infl. Thickness (ft)	Can Liquefy	
5.00	20	36.00	120.00	2.50	Yes	
7.50	3	36.00	120.00	2.50	Yes	
10.00	14	36.00	120.00	5.00	Yes	
15.00	30	36.00	120.00	5.00	Yes	
20.00	50	36.00	120.00	5.00	Yes	
25.00	23	36.00	120.00	5.00	Yes	
30.00	42	36.00	120.00	5.00	Yes	
35.00	50	36.00	120.00	5.00	Yes	

Abbreviations

Depth:Depth at which test was performed (ft)SPT Field Value:Number of blows per footFines Content:Fines content at test depth (%)Unit Weight:Unit weight at test depth (pcf)Infl. Thickness:Thickness of the soil layer to be considered in settlements analysis (ft)Can Liquefy:User defined switch for excluding/including test depth from the analysis procedure

:: Cyclic Resistance Ratio (CRR) calculation data ::

Depth (ft)	SPT Field Value	Unit Weight (pcf)	σ _v (tsf)	u₀ (tsf)	σ' _{vo} (tsf)	m	C _N	CE	CB	C _R	Cs	(N ₁) ₆₀	FC (%)	Δ(N ₁) ₆₀	(N ₁) _{60cs}	CRR _{7.5}
5.00	20	120.00	0.30	0.00	0.30	0.29	1.45	1.25	1.00	0.75	1.20	33	36.00	5.52	39	4.000
7.50	3	120.00	0.45	0.02	0.43	0.49	1.55	1.25	1.00	0.80	1.20	6	36.00	5.52	12	0.132
10.00	14	120.00	0.60	0.09	0.51	0.37	1.31	1.25	1.00	0.80	1.20	22	36.00	5.52	28	0.384
15.00	30	120.00	0.90	0.25	0.65	0.28	1.14	1.25	1.00	0.85	1.20	44	36.00	5.52	50	4.000
20.00	50	120.00	1.20	0.41	0.79	0.10	1.03	1.25	1.00	0.95	1.20	73	36.00	5.52	79	4.000
25.00	23	120.00	1.50	0.56	0.94	0.30	1.04	1.25	1.00	0.95	1.20	34	36.00	5.52	40	4.000
30.00	42	120.00	1.80	0.72	1.08	0.18	1.00	1.25	1.00	1.00	1.20	63	36.00	5.52	69	4.000
35.00	50	120.00	2.10	0.87	1.23	0.10	0.99	1.25	1.00	1.00	1.20	74	36.00	5.52	80	4.000

Abbreviations

- σ_v: Total stress during SPT test (tsf)
- u_o: Water pore pressure during SPT test (tsf)
- σ'_{vo} : Effective overburden pressure during SPT test (tsf)
- m: Stress exponent normalization factor
- C_N: Overburden corretion factor
- C_E: Energy correction factor
- C_B: Borehole diameter correction factor
- C_R: Rod length correction factor
- C_S: Liner correction factor
- $N_{1(60)} {:} \quad$ Corrected N_{SPT} to a 60% energy ratio
- $\Delta(N_1)_{60}$ Equivalent clean sand adjustment
- $N_{1(60)cs}$: Corected $N_{1(60)}$ value for fines content
- CRR_{7.5}: Cyclic resistance ratio for M=7.5

:: Cyclic Stress Ratio calculation (CSR fully adjusted and normalized) ::

Depth (ft)	Unit Weight (pcf)	σ _{v,eq} (tsf)	u _{o,eq} (tsf)	σ' _{vo,eq} (tsf)	r d	CSR	MSF _{max}	(N1)60cs	MSF	CSR _{eq,M=7.5}	K sigma	CSR*	FS	
5.00	120.00	0.30	0.00	0.30	1.01	0.973	2.20	39	0.48	2.046	1.10	1.860	2.000	•
7.50	120.00	0.45	0.08	0.37	1.01	1.178	1.24	12	0.90	1.313	1.10	1.194	0.111	•
10.00	120.00	0.60	0.16	0.44	1.01	1.317	1.88	28	0.62	2.140	1.10	1.945	0.197	•
15.00	120.00	0.90	0.31	0.59	1.01	1.494	2.20	50	0.48	3.140	1.10	2.855	2.000	•
20.00	120.00	1.20	0.47	0.73	1.01	1.603	2.20	79	0.48	3.369	1.10	3.062	2.000	•

LiqSVs 1.0.1.46 - SPT & Vs Liquefaction Assessment Software

Project File: \\eureka\Projects\2022\022138-TaylorWyDanco\Data\Liquefaction_Analysis\SPT Liquefaction Assessment.lsvs

:: Cyclic Stress Ratio calculation (CSR fully adjusted and normalized) ::

Depth (ft)	Unit Weight (pcf)	σ _{v,eq} (tsf)	u _{o,eq} (tsf)	σ' _{vo,eq} (tsf)	r d	CSR	MSF _{max}	(N ₁) _{60cs}	MSF	CSR _{eq,M=7.5}	K sigma	CSR*	FS	
25.00	120.00	1.50	0.62	0.88	1.01	1.676	2.20	40	0.48	3.524	1.06	3.338	2.000	•
30.00	120.00	1.80	0.78	1.02	1.01	1.730	2.20	69	0.48	3.635	1.01	3.596	2.000	•
35.00	120.00	2.10	0.94	1.16	1.01	1.769	2.20	80	0.48	3.719	0.97	3.826	2.000	•

Abbreviations

$\sigma_{v,eq}$:	Total overburden pressure at test point, during earthquake (tsf)
U _{o,eq} :	Water pressure at test point, during earthquake (tsf)
$\sigma'_{vo,eq}$:	Effective overburden pressure, during earthquake (tsf)
r _d :	Nonlinear shear mass factor
CSR :	Cyclic Stress Ratio
MSF :	Magnitude Scaling Factor
CSR _{eg,M=7.5} :	CSR adjusted for M=7.5
K _{sigma} :	Effective overburden stress factor
CSR*:	CSR fully adjusted
FS:	Calculated factor of safety against soil liquefaction

:: Liquef	action p	otential	accordin	g to Iwasaki	::
Depth (ft)	FS	F	wz	Thickness (ft)	IL
5.00	2.000	0.00	9.24	2.50	0.00
7.50	0.111	0.89	8.86	2.50	6.00
10.00	0.197	0.80	8.48	2.50	5.19
15.00	2.000	0.00	7.71	5.00	0.00
20.00	2.000	0.00	6.95	5.00	0.00
25.00	2.000	0.00	6.19	5.00	0.00
30.00	2.000	0.00	5.43	5.00	0.00
35.00	2.000	0.00	4.67	5.00	0.00

Overall potential I_L : 11.19

 $I_L = 0.00$ - No liquefaction

 I_{L} between 0.00 and 5 - Liquefaction not probable

 $I_{\mbox{\tiny L}}$ between 5 and 15 - Liquefaction probable

 $I_L > 15$ - Liquefaction certain

:: Vertical & Lateral displ.acements estimation for saturated sands ::

Depth (ft)	(N ₁) _{60cs}	Υιm (%)	Fα	FS _{liq}	Ymax (%)	e _v (%)	dz (ft)	S _{v-1D} (in)	LDI (ft)
5.00	39	1.07	-0.73	2.000	0.00	0.00	2.50	0.000	0.00
7.50	12	38.03	0.86	0.111	38.03	3.34	2.50	8.356	0.00
10.00	28	6.08	0.04	0.197	3.92	0.83	5.00	4.172	0.00
15.00	50	0.04	-1.59	2.000	0.00	0.00	5.00	0.000	0.00
20.00	79	0.00	-4.11	2.000	0.00	0.00	5.00	0.000	0.00
25.00	40	0.87	-0.80	2.000	0.00	0.00	5.00	0.000	0.00
30.00	69	0.00	-3.21	2.000	0.00	0.00	5.00	0.000	0.00
35.00	80	0.00	-4.20	2.000	0.00	0.00	5.00	0.000	0.00

:: Vertic	al & Later	al displ.	aceme	nts estin	nation fo	or satura	ted sand	s ::		
Depth (ft)	(N1)60cs	γ _{lim} (%)	Fα	FS liq	γ _{max} (%)	e _v (%)	dz (ft)	S _{v-1D} (in)	LDI (ft)	

Cumulative settlements: 12.527 0.00

Abbreviations

Limiting shear strain (%) Ylim:

F_α/N:

Maximum shear strain factor Maximum shear strain (%) Post liquefaction volumetric strain (%) γ_{max}:

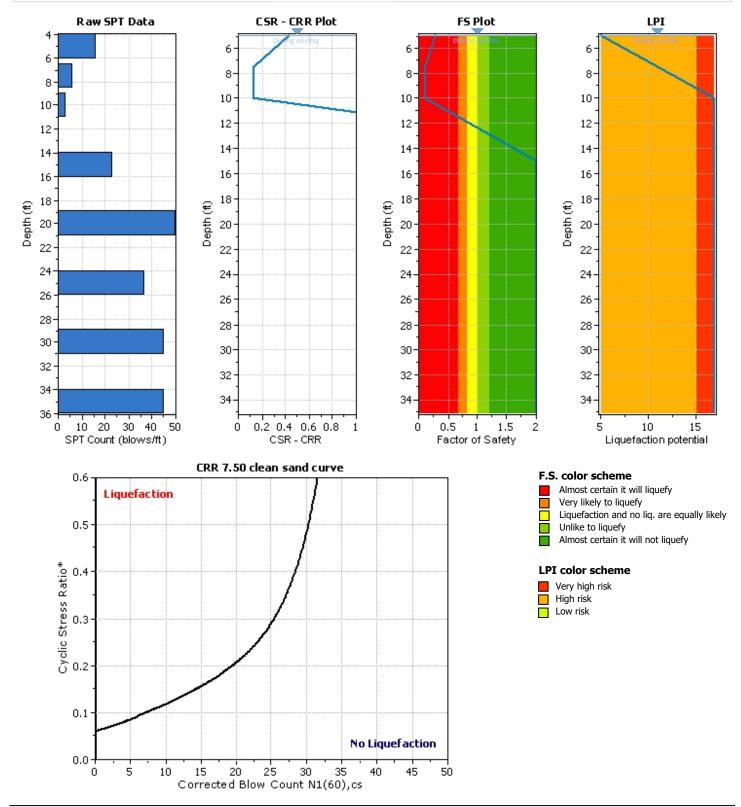
e_v∷

Estimated vertical settlement (in) Estimated lateral displacement (ft) **S**_{v-1D}: LDI:

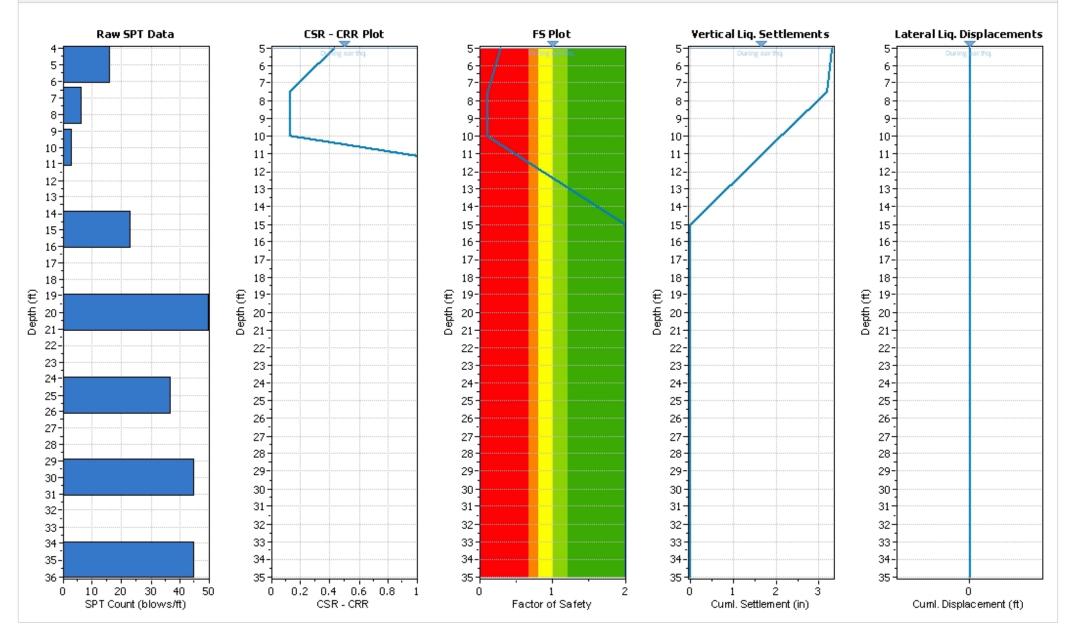
SPT BASED LIQUEFACTION ANALYSIS REPORT

Project title : DANCO-Taylor Way Geotechnical Investigation

SPT Name: B-2


Location : Blue Lake, Humboldt County, CA

:: Input parameters and analysis properties ::


Analysis method:
Fines correction method:
Sampling method:
Borehole diameter:
Rod length:
Hammer energy ratio:

Boulanger & Idriss, 2014
Boulanger & Idriss, 2014
Sampler wo liners
65mm to 115mm
3.00 ft
1.25

G.W.T. (in-situ):	7.00 ft
G.W.T. (earthq.):	5.00 ft
Earthquake magnitude M:	9.10 ft
Peak ground acceleration:	1.49 g
Eq. external load:	0.00 tsf

:: Overall Liquefaction Assessment Analysis Plots ::

LiqSVs 1.0.1.46 - SPT & Vs Liquefaction Assessment Software

Project File: \\eureka\Projects\2022\022138-TaylorWyDanco\Data\Liquefaction_Analysis\SPT Liquefaction Assessment.lsvs

··· Field input data ··

Field ill						
Test Depth (ft)	SPT Field Value (blows)	Fines Content (%)	Unit Weight (pcf)	Infl. Thickness (ft)	Can Liquefy	
5.00	16	6.00	120.00	2.50	Yes	
7.50	6	6.00	120.00	2.50	Yes	
10.00	3	38.00	120.00	5.00	Yes	
15.00	23	32.00	120.00	5.00	Yes	
20.00	50	32.00	120.00	5.00	Yes	
25.00	37	4.00	120.00	5.00	Yes	
30.00	45	4.00	120.00	5.00	Yes	
35.00	45	4.00	120.00	5.00	Yes	

Abbreviations

Depth:	Depth at which test was performed (ft)
SPT Field Value:	Number of blows per foot
Fines Content:	Fines content at test depth (%)
Unit Weight:	Unit weight at test depth (pcf)
Infl. Thickness:	Thickness of the soil layer to be considered in settlements analysis (ft)
Can Liquefy:	User defined switch for excluding/including test depth from the analysis procedure

:: Cyclic Resistance Ratio (CRR) calculation data ::

Depth (ft)	SPT Field Value	Unit Weight (pcf)	σ _v (tsf)	u₀ (tsf)	σ' _{vo} (tsf)	m	C _N	CE	Св	C _R	Cs	(N ₁) ₆₀	FC (%)	Δ(N ₁) ₆₀	(N ₁) _{60cs}	CRR _{7.5}
5.00	16	120.00	0.30	0.00	0.30	0.37	1.60	1.25	1.00	0.75	1.20	29	6.00	0.03	29	0.429
7.50	6	120.00	0.45	0.02	0.43	0.52	1.59	1.25	1.00	0.80	1.20	11	6.00	0.03	11	0.125
10.00	3	120.00	0.60	0.09	0.51	0.50	1.45	1.25	1.00	0.80	1.20	5	38.00	5.55	11	0.125
15.00	23	120.00	0.90	0.25	0.65	0.30	1.16	1.25	1.00	0.85	1.20	34	32.00	5.43	39	4.000
20.00	50	120.00	1.20	0.41	0.79	0.10	1.03	1.25	1.00	0.95	1.20	73	32.00	5.43	78	4.000
25.00	37	120.00	1.50	0.56	0.94	0.22	1.03	1.25	1.00	0.95	1.20	54	4.00	0.00	54	4.000
30.00	45	120.00	1.80	0.72	1.08	0.15	1.00	1.25	1.00	1.00	1.20	67	4.00	0.00	67	4.000
35.00	45	120.00	2.10	0.87	1.23	0.16	0.98	1.25	1.00	1.00	1.20	66	4.00	0.00	66	4.000

Abbreviations

- σ_v: Total stress during SPT test (tsf)
- Water pore pressure during SPT test (tsf) u_o:
- σ'νο: Effective overburden pressure during SPT test (tsf)
- Stress exponent normalization factor m:
- C_N: Overburden corretion factor
- Energy correction factor C_E:
- Borehole diameter correction factor C_B:
- C_R: Rod length correction factor
- Cs: Liner correction factor
- N₁₍₆₀₎: Corrected $N_{\mbox{\scriptsize SPT}}$ to a 60% energy ratio
- $\Delta(N_1)_{60} \quad \text{Equivalent clean sand adjustment}$
- $N_{1(60)cs}\colon$ Corected $N_{1(60)}$ value for fines content
- CRR_{7.5}: Cyclic resistance ratio for M=7.5

:: Cyclic Stress Ratio calculation (CSR fully adjusted and normalized) ::

Depth (ft)	Unit Weight (pcf)	σ _{v,eq} (tsf)	u _{o,eq} (tsf)	σ' _{vo,eq} (tsf)	r d	CSR	MSF _{max}	(N1)60cs	MSF	CSR _{eq,M=7.5}	K sigma	CSR*	FS	
5.00	120.00	0.30	0.00	0.30	1.01	0.973	1.94	29	0.59	1.649	1.10	1.499	0.286	•
7.50	120.00	0.45	0.08	0.37	1.01	1.178	1.21	11	0.91	1.299	1.10	1.180	0.106	•
10.00	120.00	0.60	0.16	0.44	1.01	1.317	1.21	11	0.91	1.452	1.08	1.340	0.093	•
15.00	120.00	0.90	0.31	0.59	1.01	1.494	2.20	39	0.48	3.140	1.10	2.855	2.000	•
20.00	120.00	1.20	0.47	0.73	1.01	1.603	2.20	78	0.48	3.369	1.10	3.062	2.000	•

LiqSVs 1.0.1.46 - SPT & Vs Liquefaction Assessment Software

Project File: \\eureka\Projects\2022\022138-TaylorWyDanco\Data\Liquefaction_Analysis\SPT Liquefaction Assessment.lsvs

:: Cyclic Stress Ratio calculation (CSR fully adjusted and normalized) ::

Depth (ft)	Unit Weight (pcf)	σ _{v,eq} (tsf)	u _{o,eq} (tsf)	σ' _{vo,eq} (tsf)	r d	CSR	MSF _{max}	(N1)60cs	MSF	CSR _{eq,M=7.5}	K sigma	CSR*	FS	
25.00	120.00	1.50	0.62	0.88	1.01	1.676	2.20	54	0.48	3.524	1.06	3.338	2.000	•
30.00	120.00	1.80	0.78	1.02	1.01	1.730	2.20	67	0.48	3.635	1.01	3.596	2.000	•
35.00	120.00	2.10	0.94	1.16	1.01	1.769	2.20	66	0.48	3.719	0.97	3.826	2.000	•

Abbreviations

$\sigma_{v,eq}$:	Total overburden pressure at test point, during earthquake (tsf)
U _{o,eq} :	Water pressure at test point, during earthquake (tsf)
$\sigma'_{vo,eq}$:	Effective overburden pressure, during earthquake (tsf)
r _d :	Nonlinear shear mass factor
CSR :	Cyclic Stress Ratio
MSF :	Magnitude Scaling Factor
CSR _{eg,M=7.5} :	CSR adjusted for M=7.5
K _{sigma} :	Effective overburden stress factor
CSR*:	CSR fully adjusted
FS:	Calculated factor of safety against soil liquefaction

:: Liquef	action p	otential	accordin	g to Iwasaki	::
Depth (ft)	FS	F	wz	Thickness (ft)	IL
5.00	0.286	0.71	9.24	2.50	5.03
7.50	0.106	0.89	8.86	2.50	6.03
10.00	0.093	0.91	8.48	2.50	5.86
15.00	2.000	0.00	7.71	5.00	0.00
20.00	2.000	0.00	6.95	5.00	0.00
25.00	2.000	0.00	6.19	5.00	0.00
30.00	2.000	0.00	5.43	5.00	0.00
35.00	2.000	0.00	4.67	5.00	0.00

Overall potential I_L : 16.91

 $I_L = 0.00$ - No liquefaction

 I_{L} between 0.00 and 5 - Liquefaction not probable

 $I_{\mbox{\tiny L}}$ between 5 and 15 - Liquefaction probable

 $I_L > 15$ - Liquefaction certain

:: Vertical & Lateral displ.acements estimation for saturated sands ::

Depth (ft)	(N1)60cs	¥lim (%)	Fa	FS _{liq}	Υ _{max} (%)	e _v (%)	dz (ft)	S _{v-1D} (in)	LDI (ft)
5.00	29	5.33	-0.02	0.286	1.99	0.41	2.50	1.022	0.00
7.50	11	42.40	0.89	0.106	42.40	3.53	2.50	8.823	0.00
10.00	11	42.40	0.89	0.093	42.40	3.53	5.00	17.646	0.00
15.00	39	1.07	-0.73	2.000	0.00	0.00	5.00	0.000	0.00
20.00	78	0.00	-4.01	2.000	0.00	0.00	5.00	0.000	0.00
25.00	54	0.00	-1.92	2.000	0.00	0.00	5.00	0.000	0.00
30.00	67	0.00	-3.03	2.000	0.00	0.00	5.00	0.000	0.00
35.00	66	0.00	-2.94	2.000	0.00	0.00	5.00	0.000	0.00

: Vertical & Lateral displ.acements estimation for saturated sands ::											
epth ft)	(N1)60cs	γ _{lim} (%)	Fa	FS _{liq}	Υ _{max} (%)	e _v (%)	dz (ft)	S _{v-1D} (in)	LDI (ft)		

Cumulative settlements: 27.491 0.00

Abbreviations

Limiting shear strain (%) Ylim:

F_α/N:

Maximum shear strain factor Maximum shear strain (%) Post liquefaction volumetric strain (%) γ_{max}:

e_v∷

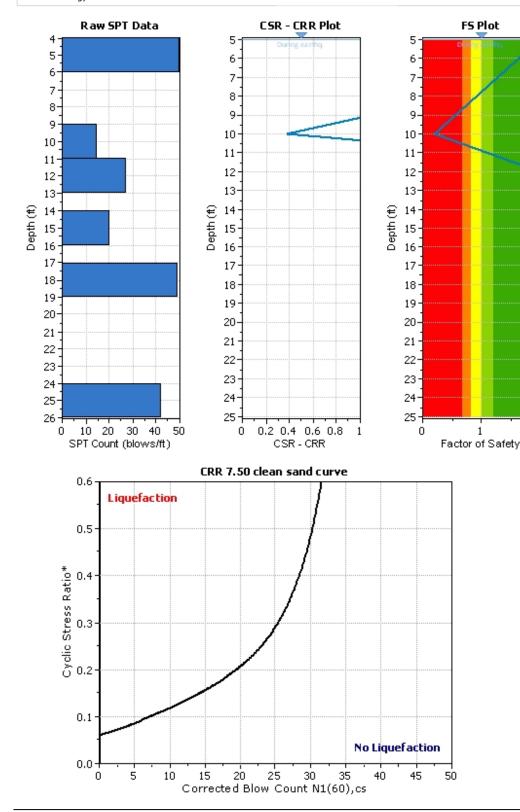
Estimated vertical settlement (in) Estimated lateral displacement (ft) **S**_{v-1D}: LDI:

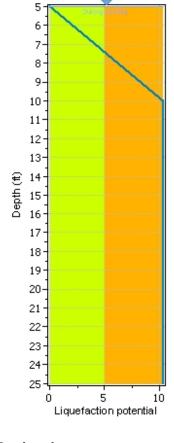
SPT BASED LIQUEFACTION ANALYSIS REPORT

Project title : DANCO-Taylor Way Geotechnical Investigation

SPT Name: B-3

LPI


Location : Blue Lake, Humboldt County, CA


:: Input parameters and analysis properties ::

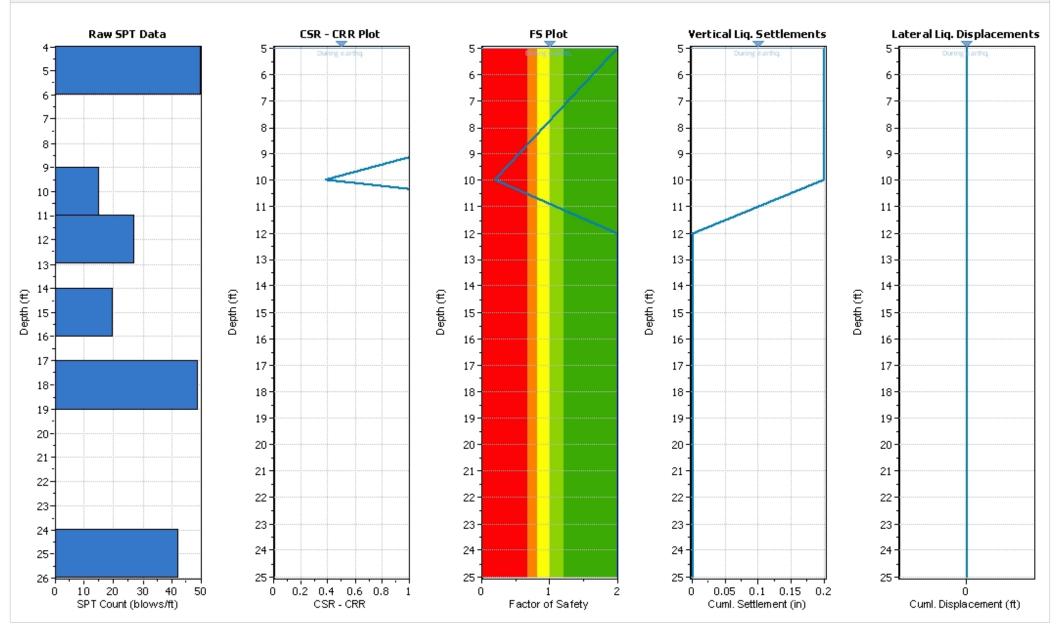
Analysis method: Fines correction method: Sampling method: Borehole diameter: Rod length: Hammer energy ratio:

Boulanger & Idriss, 2014
Boulanger & Idriss, 2014
Sampler wo liners
65mm to 115mm
3.00 ft
1.25

G.W.T. (in-situ):	7.00 ft
G.W.T. (earthq.):	5.00 ft
Earthquake magnitude M _w :	9.10 ft
Peak ground acceleration:	1.49 g
Eq. external load:	0.00 tsf

F.S. color scheme

1


2

- Almost certain it will liquefy
- Very likely to liquefy
- Liquefaction and no liq. are equally likely
- Unlike to liquefy
 - Almost certain it will not liquefy

LPI color scheme

- Very high risk
- High risk
- Low risk

:: Overall Liquefaction Assessment Analysis Plots ::

LiqSVs 1.0.1.46 - SPT & Vs Liquefaction Assessment Software

Project File: \\eureka\Projects\2022\022138-TaylorWyDanco\Data\Liquefaction_Analysis\SPT Liquefaction Assessment.lsvs

:: Field input data ::

	put uata				
Test Depth (ft)	SPT Field Value (blows)	Fines Content (%)	Unit Weight (pcf)	Infl. Thickness (ft)	Can Liquefy
5.00	50	8.00	120.00	5.00	Yes
10.00	15	29.00	120.00	2.00	Yes
12.00	27	29.00	120.00	3.00	Yes
15.00	20	36.00	120.00	3.00	Yes
18.00	49	36.00	120.00	7.00	Yes
25.00	42	36.00	120.00	5.00	Yes

Abbreviations

Depth:	Depth at which test was performed (ft)
SPT Field Value:	Number of blows per foot
Fines Content:	Fines content at test depth (%)
Unit Weight:	Unit weight at test depth (pcf)
Infl. Thickness:	Thickness of the soil layer to be considered in settlements analysis (ft)
Can Liquefy:	User defined switch for excluding/including test depth from the analysis procedure

:: Cyclic Resistance Ratio (CRR) calculation data ::

Depth (ft)	SPT Field Value	Unit Weight (pcf)	σ _v (tsf)	u₀ (tsf)	σ' _{vo} (tsf)	m	C _N	CE	C _B	C _R	Cs	(N ₁) ₆₀	FC (%)	Δ(N ₁) ₆₀	(N ₁) _{60cs}	CRR _{7.5}
5.00	50	120.00	0.30	0.00	0.30	0.15	1.21	1.25	1.00	0.75	1.20	68	8.00	0.37	68	4.000
10.00	15	120.00	0.60	0.09	0.51	0.36	1.30	1.25	1.00	0.80	1.20	23	29.00	5.32	28	0.384
12.00	27	120.00	0.72	0.16	0.56	0.26	1.18	1.25	1.00	0.85	1.20	41	29.00	5.32	46	4.000
15.00	20	120.00	0.90	0.25	0.65	0.32	1.17	1.25	1.00	0.85	1.20	30	36.00	5.52	36	4.000
18.00	49	120.00	1.08	0.34	0.74	0.10	1.04	1.25	1.00	0.95	1.20	73	36.00	5.52	79	4.000
25.00	42	120.00	1.50	0.56	0.94	0.16	1.02	1.25	1.00	0.95	1.20	61	36.00	5.52	67	4.000

Abbreviations

- σ_v : Total stress during SPT test (tsf)
- u_o: Water pore pressure during SPT test (tsf)
- σ'_{vo} : Effective overburden pressure during SPT test (tsf)
- m: Stress exponent normalization factor
- C_N : Overburden corretion factor
- C_E: Energy correction factor
- C_B: Borehole diameter correction factor
- C_R: Rod length correction factor
- C_s: Liner correction factor
- $N_{1(60)}$: Corrected N_{SPT} to a 60% energy ratio
- $\Delta(N_1)_{60}$ Equivalent clean sand adjustment
- $N_{1(60)cs}\colon$ Corected $N_{1(60)}$ value for fines content
- CRR_{7.5}: Cyclic resistance ratio for M=7.5

:: Cyclic	Stress Ratio	o calculati	on (CSR	fully adj	justed a	and norn	nalized) :	•						
Depth (ft)	Unit Weight (pcf)	σ _{v,eq} (tsf)	u _{o,eq} (tsf)	σ' _{vo,eq} (tsf)	r d	CSR	MSF _{max}	(N ₁) _{60cs}	MSF	CSR _{eq,M=7.5}	K sigma	CSR*	FS	
5.00	120.00	0.30	0.00	0.30	1.01	0.973	2.20	68	0.48	2.046	1.10	1.860	2.000	•
10.00	120.00	0.60	0.16	0.44	1.01	1.317	1.88	28	0.62	2.140	1.10	1.945	0.197	•
12.00	120.00	0.72	0.22	0.50	1.01	1.400	2.20	46	0.48	2.942	1.10	2.675	2.000	•
15.00	120.00	0.90	0.31	0.59	1.01	1.494	2.20	36	0.48	3.140	1.10	2.855	2.000	•
18.00	120.00	1.08	0.41	0.67	1.01	1.565	2.20	79	0.48	3.289	1.10	2.990	2.000	•
25.00	120.00	1.50	0.62	0.88	1.01	1.676	2.20	67	0.48	3.524	1.06	3.338	2.000	•

: Cyclic	Stress Ratio	o calculati	ion (CSR	fully adj	usted a	and norm	nalized) :					
Depth (ft)	Unit Weight (pcf)	σ _{v,eq} (tsf)	u _{o,eq} (tsf)	σ' _{vo,eq} (tsf)	r _d	CSR	MSF _{max}	(N1)60cs	MSF	CSR _{eq,M=7.5} K _{sigma}	CSR*	FS

Abbreviations

σ _{v,eq} :	Total overburden pressure at test point, during earthquake (tsf)
U _{o,eq} :	Water pressure at test point, during earthquake (tsf)
σ' _{vo,eq} :	Effective overburden pressure, during earthquake (tsf)
r _d :	Nonlinear shear mass factor
CSR :	Cyclic Stress Ratio
MSF :	Magnitude Scaling Factor
CSR _{eg,M=7.5} :	CSR adjusted for M=7.5
K _{sigma} :	Effective overburden stress factor
CSR*:	CSR fully adjusted
FS:	Calculated factor of safety against soil liquefaction

:: Liquefaction potential according to Iwasaki ::

-				g to Inaball	
Depth (ft)	FS	F	wz	Thickness (ft)	IL
5.00	2.000	0.00	9.24	5.00	0.00
10.00	0.197	0.80	8.48	5.00	10.37
12.00	2.000	0.00	8.17	2.00	0.00
15.00	2.000	0.00	7.71	3.00	0.00
18.00	2.000	0.00	7.26	3.00	0.00
25.00	2.000	0.00	6.19	7.00	0.00

Overall potential I_L : 10.37

 I_{L} = 0.00 - No liquefaction

 I_{L} between 0.00 and 5 - Liquefaction not probable

 I_{L} between 5 and 15 - Liquefaction probable

 $I_L > 15$ - Liquefaction certain

:: Vertic	al & Later	al displ	.acemer	nts estim	nation fo	or satura	ted sand	s ::			
Depth (ft)	(N ₁) _{60cs}	Ylim (%)	Fα	FS _{liq}	Ymax (%)	e _v (%)	dz (ft)	S _{v-1D} (in)	LDI (ft)		
5.00	68	0.00	-3.12	2.000	0.00	0.00	5.00	0.000	0.00		
10.00	28	6.08	0.04	0.197	3.92	0.83	2.00	1.669	0.00		
12.00	46	0.19	-1.27	2.000	0.00	0.00	3.00	0.000	0.00		
15.00	36	1.86	-0.51	2.000	0.00	0.00	3.00	0.000	0.00		
18.00	79	0.00	-4.11	2.000	0.00	0.00	7.00	0.000	0.00		
25.00	67	0.00	-3.03	2.000	0.00	0.00	5.00	0.000	0.00		

Cumulative settlements: 1.669 0.00

Abbreviations

 γ_{lim} : Limiting shear strain (%)

 F_{α}/N : Maximun shear strain factor

γ_{max}: Maximum shear strain (%)

e_v:: Post liquefaction volumetric strain (%) S_{v-1D}: Estimated vertical settlement (in)

S_{v-1D}: Estimated vertical settlement (in) LDI: Estimated lateral displacement (ft)

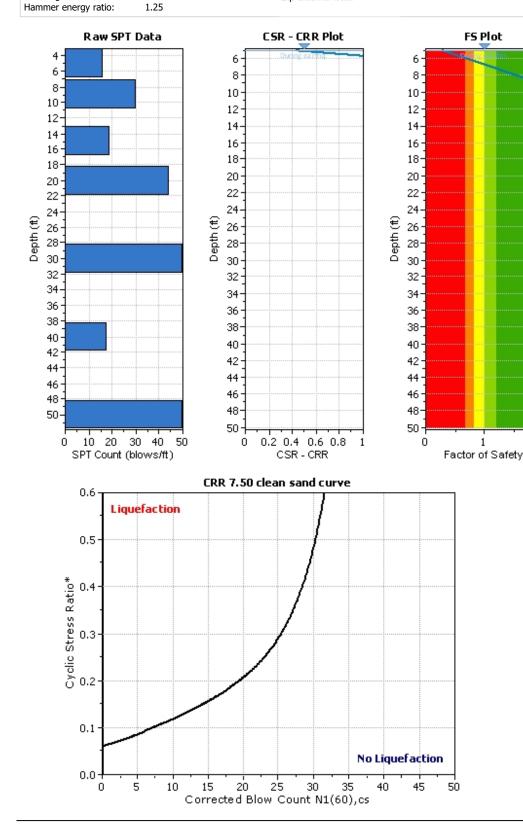
SPT BASED LIQUEFACTION ANALYSIS REPORT

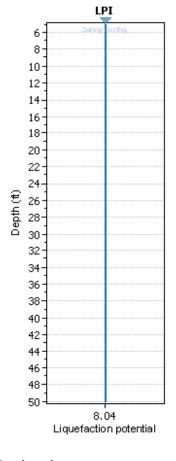
FS Plot

1

2

Project title : DANCO-Taylor Way Geotechnical Investigation

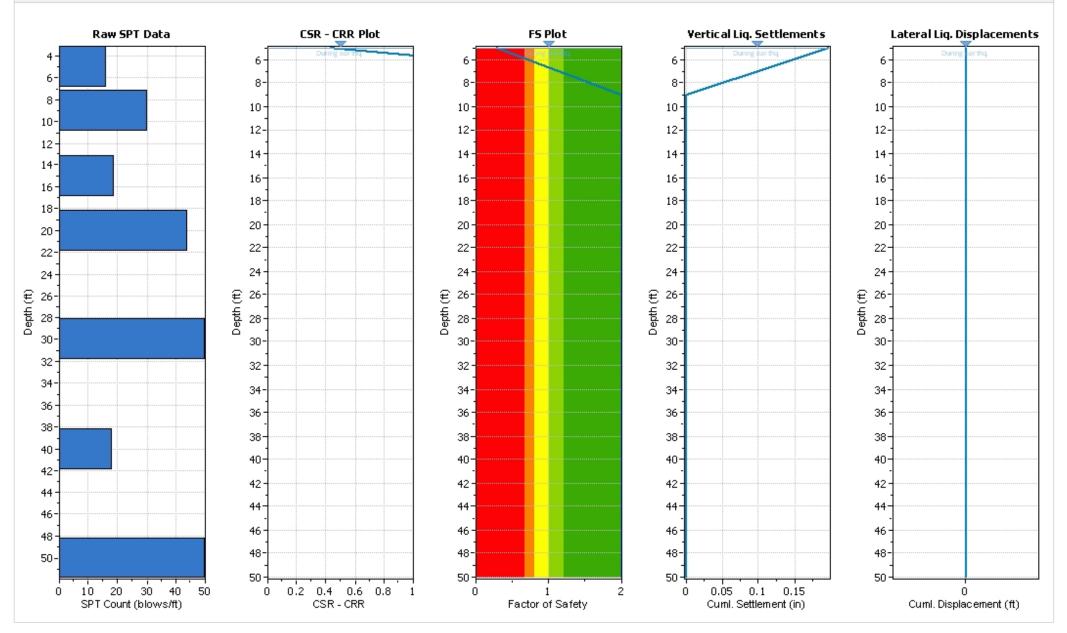

SPT Name: B-4


Location : Blue Lake, Humboldt County, CA

:: Input parameters and analysis properties :: Analysis method: Fines correction method: Sampling method: Borehole diameter: Rod length:

-			-	
Boulanger	& I	dris	5, 2	2014
Boulanger	& I	dris	5, 2	2014
Sampler w	ıo li	ners		
65mm to 3	115	mm		
3.00 ft				

G.W.T. (in-situ):	7.00 ft
G.W.T. (earthq.):	5.00 ft
Earthquake magnitude M _w :	9.10 ft
Peak ground acceleration:	1.49 g
Eq. external load:	0.00 tsf


F.S. color scheme

- Almost certain it will liquefy
- Very likely to liquefy
- Liquefaction and no liq. are equally likely
- Unlike to liquefy
 - Almost certain it will not liquefy

LPI color scheme

- Very high risk
- High risk Low risk

:: Overall Liquefaction Assessment Analysis Plots ::

LiqSVs 1.0.1.46 - SPT & Vs Liquefaction Assessment Software

Project File: \\eureka\Projects\2022\022138-TaylorWyDanco\Data\Liquefaction_Analysis\SPT Liquefaction Assessment.lsvs

:: Field input data ::

	put udta				
Test Depth (ft)	SPT Field Value (blows)	Fines Content (%)	Unit Weight (pcf)	Infl. Thickness (ft)	Can Liquefy
5.00	16	7.00	120.00	4.00	Yes
9.00	30	7.00	129.00	6.00	Yes
15.00	19	15.00	129.00	5.00	Yes
20.00	44	15.00	129.00	10.00	Yes
30.00	50	15.00	129.00	10.00	Yes
40.00	18	75.00	129.00	10.00	No
50.00	50	26.00	129.00	5.00	No

Abbreviations

Depth:	Depth at which test was performed (ft)
SPT Field Value:	Number of blows per foot
Fines Content:	Fines content at test depth (%)
Unit Weight:	Unit weight at test depth (pcf)
Infl. Thickness:	Thickness of the soil layer to be considered in settlements analysis (ft)
Can Liquefy:	User defined switch for excluding/including test depth from the analysis procedure

:: Cyclic	:: Cyclic Resistance Ratio (CRR) calculation data ::															
Depth (ft)	SPT Field Value	Unit Weight (pcf)	σ _v (tsf)	u₀ (tsf)	σ' _{vo} (tsf)	m	C _N	CE	C _B	C _R	Cs	(N ₁) ₆₀	FC (%)	Δ(N ₁) ₆₀	(N1)60cs	CRR _{7.5}
5.00	16	120.00	0.30	0.00	0.30	0.37	1.60	1.25	1.00	0.75	1.20	29	7.00	0.14	29	0.429
9.00	30	129.00	0.56	0.06	0.50	0.27	1.23	1.25	1.00	0.80	1.20	44	7.00	0.14	44	4.000
15.00	19	129.00	0.94	0.25	0.70	0.35	1.16	1.25	1.00	0.85	1.20	28	15.00	3.26	31	4.000
20.00	44	129.00	1.27	0.41	0.86	0.15	1.03	1.25	1.00	0.95	1.20	65	15.00	3.26	68	4.000
30.00	50	129.00	1.91	0.72	1.19	0.11	0.99	1.25	1.00	1.00	1.20	74	15.00	3.26	77	4.000
40.00	18	129.00	2.56	1.03	1.53	0.38	0.87	1.25	1.00	1.00	1.20	24	75.00	5.56	30	4.000
50.00	50	129.00	3.20	1.34	1.86	0.12	0.93	1.25	1.00	1.00	1.20	70	26.00	5.15	75	4.000

Abbreviations

- σ_v : Total stress during SPT test (tsf)
- u_o: Water pore pressure during SPT test (tsf)
- σ'_{vo} : Effective overburden pressure during SPT test (tsf)
- m: Stress exponent normalization factor
- C_N : Overburden corretion factor
- C_E: Energy correction factor
- C_B: Borehole diameter correction factor
- C_R: Rod length correction factor
- Cs: Liner correction factor
- $N_{1(60)} {:} \quad$ Corrected N_{SPT} to a 60% energy ratio
- $\Delta(N_1)_{60}$ Equivalent clean sand adjustment

 $N_{1(60)cs} {\rm :} \ Corected \ N_{1(60)} \ value \ for \ fines \ content$

CRR_{7.5}: Cyclic resistance ratio for M=7.5

:: Cyclic Stress Ratio calculation (CSR fully adjusted and normalized) ::

Depth (ft)	Unit Weight (pcf)	σ _{v,eq} (tsf)	u _{o,eq} (tsf)	σ' _{vo,eq} (tsf)	r _d	CSR	MSF _{max}	(N ₁) _{60cs}	MSF	CSR _{eq,M=7.5}	K sigma	CSR*	FS	
5.00	120.00	0.30	0.00	0.30	1.01	0.973	1.94	29	0.59	1.649	1.10	1.499	0.286	•
9.00	129.00	0.56	0.12	0.43	1.01	1.255	2.20	44	0.48	2.638	1.10	2.398	2.000	•
15.00	129.00	0.94	0.31	0.63	1.01	1.457	2.06	31	0.54	2.711	1.10	2.464	2.000	•
20.00	129.00	1.27	0.47	0.80	1.01	1.550	2.20	68	0.48	3.258	1.08	3.009	2.000	•
30.00	129.00	1.91	0.78	1.13	1.01	1.655	2.20	77	0.48	3.479	0.98	3.550	2.000	•
40.00	129.00	2.56	1.09	1.47	1.01	1.711	2.00	30	0.56	3.032	0.93	3.246	2.000	•
50.00	129.00	3.20	1.40	1.80	1.01	1.740	2.20	75	0.48	3.658	0.84	4.337	2.000	•

LiqSVs 1.0.1.46 - SPT & Vs Liquefaction Assessment Software

Project File: \\eureka\Projects\2022\022138-TaylorWyDanco\Data\Liquefaction_Analysis\SPT Liquefaction Assessment.lsvs

:: Cyclic Stress Ratio calculation (CSR fully adjusted and normalized) ::												
Depth (ft)	Unit Weight (pcf)	σ _{v,eq} (tsf)	u _{o,eq} (tsf)	σ' _{vo,eq} (tsf)	r _d	CSR	MSF _{max}	(N ₁) _{60cs}	MSF	CSR _{eq,M=7.5} K _{sigma}	CSR*	FS

Abbreviations

σ _{v,eq} : U _{o,eq} :	Total overburden pressure at test point, during earthquake (tsf) Water pressure at test point, during earthquake (tsf)
$\sigma'_{vo,eq}$:	Effective overburden pressure, during earthquake (tsf)
r _d :	Nonlinear shear mass factor
CSR :	Cyclic Stress Ratio
MSF :	Magnitude Scaling Factor
CSR _{eg,M=7.5} :	CSR adjusted for M=7.5
K _{sigma} :	Effective overburden stress factor
CSR*:	CSR fully adjusted
FS:	Calculated factor of safety against soil liquefaction

:: Liquefaction potential according to Iwasaki ::

	P			9 00 11100010	
Depth (ft)	FS	F	wz	Thickness (ft)	IL
5.00	0.286	0.71	9.24	4.00	8.04
9.00	2.000	0.00	8.63	4.00	0.00
15.00	2.000	0.00	7.71	6.00	0.00
20.00	2.000	0.00	6.95	5.00	0.00
30.00	2.000	0.00	5.43	10.00	0.00
40.00	2.000	0.00	3.90	10.00	0.00
50.00	2.000	0.00	2.38	10.00	0.00

Overall potential IL: 8.04

 $I_L = 0.00$ - No liquefaction

 $I_{\rm L}$ between 0.00 and 5 - Liquefaction not probable $I_{\rm L}$ between 5 and 15 - Liquefaction probable

 $I_L > 15$ - Liquefaction certain

:: Vertical & Lateral displ.acements estimation for saturated sands ::

Depth (ft)	(N ₁) _{60cs}	Υlim (%)	Fa	FS _{liq}	Υ _{max} (%)	e _v (%)	dz (ft)	S _{v-1D} (in)	LDI (ft)
5.00	29	5.33	-0.02	0.286	1.99	0.41	4.00	1.636	0.00
9.00	44	0.34	-1.11	2.000	0.00	0.00	6.00	0.000	0.00
15.00	31	4.04	-0.16	2.000	0.00	0.00	5.00	0.000	0.00
20.00	68	0.00	-3.12	2.000	0.00	0.00	10.00	0.000	0.00
30.00	77	0.00	-3.92	2.000	0.00	0.00	10.00	0.000	0.00
40.00	30	0.00	0.00	2.000	0.00	0.00	10.00	0.000	0.00
50.00	75	0.00	0.00	2.000	0.00	0.00	5.00	0.000	0.00

Cumulative settlements: 1.636 0.00

Abbreviations

Ylim:	Limiting s	hear strain	(%))

F₀/N: Maximun shear strain factor

Maximum shear strain (%) γ_{max}:

Post liquefaction volumetric strain (%) e_v∷

Estimated vertical settlement (in) S_{v-1D}:

Estimated lateral displacement (ft) LDI:

References

- Ronald D. Andrus, Hossein Hayati, Nisha P. Mohanan, 2009. Correcting Liquefaction Resistance for Aged Sands Using Measured to Estimated Velocity Ratio, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 6, June 1
- Boulanger, R.W. and Idriss, I. M., 2014. CPT AND SPT BASED LIQUEFACTION TRIGGERING PROCEDURES. DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA AT DAVIS
- Robertson, P.K. and Cabal, K.L., 2007, Guide to Cone Penetration Testing for Geotechnical Engineering. Available at no cost at http://www.geologismiki.gr/
- Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D.L., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J., Liao, S., Marcuson III, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R., and Stokoe, K.H., Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshop on Evaluation of Liquefaction Resistance of Soils, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 127, October, pp 817-833
- Zhang, G., Robertson. P.K., Brachman, R., 2002, Estimating Liquefaction Induced Ground Settlements from the CPT, Canadian Geotechnical Journal, 39: pp 1168-1180
- Zhang, G., Robertson. P.K., Brachman, R., 2004, Estimating Liquefaction Induced Lateral Displacements using the SPT and CPT, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 130, No. 8, 861-871
- Pradel, D., 1998, Procedure to Evaluate Earthquake-Induced Settlements in Dry Sandy Soils, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 124, No. 4, 364-368
- R. Kayen, R. E. S. Moss, E. M. Thompson, R. B. Seed, K. O. Cetin, A. Der Kiureghian, Y. Tanaka, K. Tokimatsu, 2013. Shear-Wave Velocity–Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 3, March 1

